180 research outputs found
Preventing False Discovery in Interactive Data Analysis is Hard
We show that, under a standard hardness assumption, there is no
computationally efficient algorithm that given samples from an unknown
distribution can give valid answers to adaptively chosen
statistical queries. A statistical query asks for the expectation of a
predicate over the underlying distribution, and an answer to a statistical
query is valid if it is "close" to the correct expectation over the
distribution.
Our result stands in stark contrast to the well known fact that exponentially
many statistical queries can be answered validly and efficiently if the queries
are chosen non-adaptively (no query may depend on the answers to previous
queries). Moreover, a recent work by Dwork et al. shows how to accurately
answer exponentially many adaptively chosen statistical queries via a
computationally inefficient algorithm; and how to answer a quadratic number of
adaptive queries via a computationally efficient algorithm. The latter result
implies that our result is tight up to a linear factor in
Conceptually, our result demonstrates that achieving statistical validity
alone can be a source of computational intractability in adaptive settings. For
example, in the modern large collaborative research environment, data analysts
typically choose a particular approach based on previous findings. False
discovery occurs if a research finding is supported by the data but not by the
underlying distribution. While the study of preventing false discovery in
Statistics is decades old, to the best of our knowledge our result is the first
to demonstrate a computational barrier. In particular, our result suggests that
the perceived difficulty of preventing false discovery in today's collaborative
research environment may be inherent
Tight Lower Bounds for Differentially Private Selection
A pervasive task in the differential privacy literature is to select the
items of "highest quality" out of a set of items, where the quality of each
item depends on a sensitive dataset that must be protected. Variants of this
task arise naturally in fundamental problems like feature selection and
hypothesis testing, and also as subroutines for many sophisticated
differentially private algorithms.
The standard approaches to these tasks---repeated use of the exponential
mechanism or the sparse vector technique---approximately solve this problem
given a dataset of samples. We provide a tight lower
bound for some very simple variants of the private selection problem. Our lower
bound shows that a sample of size is required
even to achieve a very minimal accuracy guarantee.
Our results are based on an extension of the fingerprinting method to sparse
selection problems. Previously, the fingerprinting method has been used to
provide tight lower bounds for answering an entire set of queries, but
often only some much smaller set of queries are relevant. Our extension
allows us to prove lower bounds that depend on both the number of relevant
queries and the total number of queries
Skyline Identification in Multi-Armed Bandits
We introduce a variant of the classical PAC multi-armed bandit problem. There
is an ordered set of arms , each with some stochastic
reward drawn from some unknown bounded distribution. The goal is to identify
the of the set , consisting of all arms such that
has larger expected reward than all lower-numbered arms . We
define a natural notion of an -approximate skyline and prove
matching upper and lower bounds for identifying an -skyline.
Specifically, we show that in order to identify an -skyline from
among arms with probability , samples are necessary and sufficient. When , our results improve over the naive algorithm, which draws enough samples
to approximate the expected reward of every arm; the algorithm of (Auer et al.,
AISTATS'16) for Pareto-optimal arm identification is likewise superseded. Our
results show that the sample complexity of the skyline problem lies strictly in
between that of best arm identification (Even-Dar et al., COLT'02) and that of
approximating the expected reward of every arm.Comment: 18 pages, 2 Figures; an ALT'18/ISIT'18 submissio
- …