3 research outputs found
Development of new muscle contraction sensor to replace sEMG for using in muscles analysis fields
Nowadays, the technologies for detecting, processing and interpreting bioelectrical signals have improved tremendously. In particular, surface electromyography (sEMG) has gained momentum in a wide range of applications in various fields. However, sEMG sensing has several shortcomings, the most important being: measurements are heavily sensible to individual differences, sensors are difficult to position and very expensive. In this paper, the authors will present an innovative muscle contraction sensing device (MC sensor), aiming to replace sEMG sensing in the field of muscle movement analysis. Compared with sEMG, this sensor is easier to position, setup and use, less dependent from individual differences, and less expensive. Preliminary experiments, described in this paper, confirm that MC sensing is suitable for muscle contraction analysis, and compare the results of sEMG and MC sensor for the measurement of forearm muscle contraction
Development of new muscle contraction sensor to replace sEMG for using in muscles analysis fields
Nowadays, the technologies for detecting, processing and interpreting bioelectrical signals have improved tremendously. In particular, surface electromyography (sEMG) has gained momentum in a wide range of applications in various fields. However, sEMG sensing has several shortcomings, the most important being: measurements are heavily sensible to individual differences, sensors are difficult to position and very expensive. In this paper, the authors will present an innovative muscle contraction sensing device (MC sensor), aiming to replace sEMG sensing in the field of muscle movement analysis. Compared with sEMG, this sensor is easier to position, setup and use, less dependent from individual differences, and less expensive. Preliminary experiments, described in this paper, confirm that MC sensing is suitable for muscle contraction analysis, and compare the results of sEMG and MC sensor for the measurement of forearm muscle contraction
Application of wireless inertial measurement units and EMG sensors for studying deglutition - preliminary results
Different types of sensors are being used to study deglutition and mastication. These often suffer from problems related to portability, cost, reliability, comfort etc. that make it difficult to use for long term studies. An inertial measurement based sensor seems a good fit in this application; however its use has not been explored much for the specific application of deglutition research. In this paper, we present a system comprised of an IMU and EMG sensor that are integrated together as a single system. With a preliminary experiment, we determine that the system can be used for measuring the head-neck posture during swallowing in addition to other parameters during the swallowing phase. The EMG sensor may not always be a reliable source of physiological data especially for small clustered muscles like the ones responsible for swallowing. In this case, we explore the possibility of using gyroscopic data for the recognition of deglutition events