2,032 research outputs found
Perfect bell nozzle parametric and optimization curves
Nozzle contour data for untruncated Bell nozzles with expansion area ratios to 6100 and a specific heat ratio of 1.2 are provided. Curves for optimization of nozzles for maximum thrust coefficient within a given length, surface area, or area ratio are included. The nozzles are two dimensional axisymmetric and calculations were performed using the method of characteristics. Drag due to wall friction was included in the final thrust coefficient
Rapid method for determination of antimicrobial susceptibilities pattern of urinary bacteria
Method determines bacterial sensitivity to antimicrobial agents by measuring level of adenosine triphosphate remaining in the bacteria. Light emitted during reaction of sample with a mixture of luciferase and luciferin is measured
Application of luciferase assay for ATP to antimicrobial drug susceptibility
The susceptibility of bacteria, particularly those derived from body fluids, to antimicrobial agents is determined in terms of an ATP index measured by culturing a bacterium in a growth medium. The amount of ATP is assayed in a sample of the cultured bacterium by measuring the amount of luminescent light emitted when the bacterial ATP is reacted with a luciferase-luciferin mixture. The sample of the cultured bacterium is subjected to an antibiotic agent. The amount of bacterial adenosine triphosphate is assayed after treatment with the antibiotic by measuring the luminescent light resulting from the reaction. The ATP index is determined from the values obtained from the assay procedures
Application of firefly luciferase assay for adenosine triphosphate (ATP) to antimicrobial drug sensitivity testing
The development of a rapid method for determining microbial susceptibilities to antibiotics using the firefly luciferase assay for adenosine triphosphate (ATP) is documented. The reduction of bacterial ATP by an antimicrobial agent was determined to be a valid measure of drug effect in most cases. The effect of 12 antibiotics on 8 different bacterial species gave a 94 percent correlation with the standard Kirby-Buer-Agar disc diffusion method. A 93 percent correlation was obtained when the ATP assay method was applied directly to 50 urine specimens from patients with urinary tract infections. Urine samples were centrifuged first to that bacterial pellets could be suspended in broth. No primary isolation or subculturing was required. Mixed cultures in which one species was predominant gave accurate results for the most abundant organism. Since the method is based on an increase in bacterial ATP with time, the presence of leukocytes did not interfere with the interpretation of results. Both the incubation procedure and the ATP assays are compatible with automation
Mass production of volume phase holographic gratings for the VIRUS spectrograph array
The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline
array of 150 copies of a simple, fiber-fed integral field spectrograph that
will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first
optical astronomical instrument to be replicated on an industrial scale, and
represents a relatively inexpensive solution for carrying out large-area
spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each
spectrograph contains a volume phase holographic (VPH) grating with a 138 mm
diameter clear aperture as its dispersing element. The instrument utilizes the
grating in first-order for 350-550 nm. Including witness samples, a suite of
170 VPH gratings has been mass produced for VIRUS. Here, we present the design
of the VIRUS VPH gratings and a discussion of their mass production. We
additionally present the design and functionality of a custom apparatus that
has been used to rapidly test the first-order diffraction efficiency of the
gratings for various discrete wavelengths within the VIRUS spectral range. This
device has been used to perform both in-situ tests to monitor the effects of
adjustments to the production prescription as well as to carry out the final
acceptance tests of the gratings' diffraction efficiency. Finally, we present
the as-built performance results for the entire suite of VPH gratings.Comment: 16 pages, 11 figures, 2 tables. To be published in Proc. SPIE, 2014,
"Advances in Optical and Mechanical Technologies for Telescopes and
Instrumentation", 9151-53. The work presented in this article follows from
arXiv:1207:448
An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA
NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02-OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), August 13, 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months
Mathematical Model and Experimental Results for Cryogenic Densification and Sub-Cooling Using a Submerged Cooling Source
Among the many factors that determine overall rocket performance, propellant density is important because it affects the size of the rocket. Thus, in order to decrease the size of a rocket, it may be desirable to increase the density of propellants. This study analyzes the concept of increasing the propellant density by employing a cooling source submerged in the liquid propellant. A simple, mathematical model was developed to predict the rate of densification and the propellant temperature profile. The mathematical model is generic and applicable to multiple propellants. The densification rate was determined experimentally by submerging a cooling source in liquid oxygen at constant, positive pressure, and measuring the time rate of change in temperature with respect to vertical position. The results from the mathematical model provided a reasonable fit when compared to experimental results
Water budgets of the two Olentangy River experimental wetlands in 2005
The University Archives has determined that this item is of continuing value to OSU's history
Aquatic vegetation biomass in two created riparian wetlands
The University Archives has determined that this item is of continuing value to OSU's history
- …