5 research outputs found

    Contracting cardiomyocyte measured with quantitative phase imaging

    No full text
    Time-series of quantitative phase images showing a contracting cardiomyocyte at 50 fps. These images were acquired using diffraction phase microscopy. The colormap shows optical path difference measured between the cell and surrounding medium

    Atomic-Scale <i>in Situ</i> Observations of Crystallization and Restructuring Processes in Two-Dimensional MoS<sub>2</sub> Films

    No full text
    We employ atomically resolved and element-specific scanning transmission electron microscopy (STEM) to visualize <i>in situ</i> and at the atomic scale the crystallization and restructuring processes of two-dimensional (2D) molybdenum disulfide (MoS<sub>2</sub>) films. To this end, we deposit a model heterostructure of thin amorphous MoS<sub>2</sub> films onto freestanding graphene membranes used as high-resolution STEM supports. Notably, during STEM imaging the energy input from the scanning electron beam leads to beam-induced crystallization and restructuring of the amorphous MoS<sub>2</sub> into crystalline MoS<sub>2</sub> domains, thereby emulating widely used elevated temperature MoS<sub>2</sub> synthesis and processing conditions. We thereby directly observe nucleation, growth, crystallization, and restructuring events in the evolving MoS<sub>2</sub> films <i>in situ</i> and at the atomic scale. Our observations suggest that during MoS<sub>2</sub> processing, various MoS<sub>2</sub> polymorphs co-evolve in parallel and that these can dynamically transform into each other. We further highlight transitions from in-plane to out-of-plane crystallization of MoS<sub>2</sub> layers, give indication of Mo and S diffusion species, and suggest that, in our system and depending on conditions, MoS<sub>2</sub> crystallization can be influenced by a weak MoS<sub>2</sub>/graphene support epitaxy. Our atomic-scale <i>in situ</i> approach thereby visualizes multiple fundamental processes that underlie the varied MoS<sub>2</sub> morphologies observed in previous <i>ex situ</i> growth and processing work. Our work introduces a general approach to <i>in situ</i> visualize at the atomic scale the growth and restructuring mechanisms of 2D transition-metal dichalcogenides and other 2D materials

    Atomic-Scale <i>in Situ</i> Observations of Crystallization and Restructuring Processes in Two-Dimensional MoS<sub>2</sub> Films

    No full text
    We employ atomically resolved and element-specific scanning transmission electron microscopy (STEM) to visualize <i>in situ</i> and at the atomic scale the crystallization and restructuring processes of two-dimensional (2D) molybdenum disulfide (MoS<sub>2</sub>) films. To this end, we deposit a model heterostructure of thin amorphous MoS<sub>2</sub> films onto freestanding graphene membranes used as high-resolution STEM supports. Notably, during STEM imaging the energy input from the scanning electron beam leads to beam-induced crystallization and restructuring of the amorphous MoS<sub>2</sub> into crystalline MoS<sub>2</sub> domains, thereby emulating widely used elevated temperature MoS<sub>2</sub> synthesis and processing conditions. We thereby directly observe nucleation, growth, crystallization, and restructuring events in the evolving MoS<sub>2</sub> films <i>in situ</i> and at the atomic scale. Our observations suggest that during MoS<sub>2</sub> processing, various MoS<sub>2</sub> polymorphs co-evolve in parallel and that these can dynamically transform into each other. We further highlight transitions from in-plane to out-of-plane crystallization of MoS<sub>2</sub> layers, give indication of Mo and S diffusion species, and suggest that, in our system and depending on conditions, MoS<sub>2</sub> crystallization can be influenced by a weak MoS<sub>2</sub>/graphene support epitaxy. Our atomic-scale <i>in situ</i> approach thereby visualizes multiple fundamental processes that underlie the varied MoS<sub>2</sub> morphologies observed in previous <i>ex situ</i> growth and processing work. Our work introduces a general approach to <i>in situ</i> visualize at the atomic scale the growth and restructuring mechanisms of 2D transition-metal dichalcogenides and other 2D materials

    Atomic-Scale <i>in Situ</i> Observations of Crystallization and Restructuring Processes in Two-Dimensional MoS<sub>2</sub> Films

    No full text
    We employ atomically resolved and element-specific scanning transmission electron microscopy (STEM) to visualize <i>in situ</i> and at the atomic scale the crystallization and restructuring processes of two-dimensional (2D) molybdenum disulfide (MoS<sub>2</sub>) films. To this end, we deposit a model heterostructure of thin amorphous MoS<sub>2</sub> films onto freestanding graphene membranes used as high-resolution STEM supports. Notably, during STEM imaging the energy input from the scanning electron beam leads to beam-induced crystallization and restructuring of the amorphous MoS<sub>2</sub> into crystalline MoS<sub>2</sub> domains, thereby emulating widely used elevated temperature MoS<sub>2</sub> synthesis and processing conditions. We thereby directly observe nucleation, growth, crystallization, and restructuring events in the evolving MoS<sub>2</sub> films <i>in situ</i> and at the atomic scale. Our observations suggest that during MoS<sub>2</sub> processing, various MoS<sub>2</sub> polymorphs co-evolve in parallel and that these can dynamically transform into each other. We further highlight transitions from in-plane to out-of-plane crystallization of MoS<sub>2</sub> layers, give indication of Mo and S diffusion species, and suggest that, in our system and depending on conditions, MoS<sub>2</sub> crystallization can be influenced by a weak MoS<sub>2</sub>/graphene support epitaxy. Our atomic-scale <i>in situ</i> approach thereby visualizes multiple fundamental processes that underlie the varied MoS<sub>2</sub> morphologies observed in previous <i>ex situ</i> growth and processing work. Our work introduces a general approach to <i>in situ</i> visualize at the atomic scale the growth and restructuring mechanisms of 2D transition-metal dichalcogenides and other 2D materials
    corecore