1,259 research outputs found
Magnetized Accretion and Dead Zones in Protostellar Disks
The edges of magnetically-dead zones in protostellar disks have been proposed
as locations where density bumps may arise, trapping planetesimals and helping
form planets. Magneto-rotational turbulence in magnetically-active zones
provides both accretion of gas on the star and transport of mass to the dead
zone. We investigate the location of the magnetically-active regions in a
protostellar disk around a solar-type star, varying the disk temperature,
surface density profile, and dust-to-gas ratio. We also consider stellar masses
between 0.4 and 2 , with corresponding adjustments in the disk mass
and temperature. The dead zone's size and shape are found using the Elsasser
number criterion with conductivities including the contributions from ions,
electrons, and charged fractal dust aggregates. The charged species' abundances
are found using the approach proposed by S. Okuzumi. The dead zone is in most
cases defined by the ambipolar diffusion. In our maps, the dead zone takes a
variety of shapes, including a fish-tail pointing away from the star and
islands located on and off the midplane. The corresponding accretion rates vary
with radius, indicating locations where the surface density will increase over
time, and others where it will decrease. We show that density bumps do not
readily grow near the dead zone's outer edge, independently of the disk
parameters and the dust properties. Instead, the accretion rate peaks at the
radius where the gas-phase metals freeze out. This could lead to clearing a
valley in the surface density, and to a trap for pebbles located just outside
the metal freeze-out line.Comment: 58 pages, 25 figures, 2 tables, accepted to Ap
Protostellar Disk Evolution Over Million-Year Timescales with a Prescription for Magnetized Turbulence
Magnetorotational instability (MRI) is the most promising mechanism behind
accretion in low-mass protostellar disks. Here we present the first analysis of
the global structure and evolution of non-ideal MRI-driven T-Tauri disks on
million-year timescales. We accomplish this in a 1+1D simulation by calculating
magnetic diffusivities and utilizing turbulence activity criteria to determine
thermal structure and accretion rate without resorting to a 3-D
magnetohydrodynamical (MHD) simulation. Our major findings are as follows.
First, even for modest surface densities of just a few times the minimum-mass
solar nebula, the dead zone encompasses the giant planet-forming region,
preserving any compositional gradients. Second, the surface density of the
active layer is nearly constant in time at roughly 10 g/cm2, which we use to
derive a simple prescription for viscous heating in MRI-active disks for those
who wish to avoid detailed MHD computations. Furthermore, unlike a standard
disk with constant-alpha viscosity, the disk midplane does not cool off over
time, though the surface cools as the star evolves along the Hayashi track. The
ice line is firmly in the terrestrial planet-forming region throughout disk
evolution and can move either inward or outward with time, depending on whether
pileups form near the star. Finally, steady-state mass transport is a poor
description of flow through an MRI-active disk. We caution that MRI activity is
sensitive to many parameters, including stellar X-ray flux, grain size,
gas/small grain mass ratio and magnetic field strength, and we have not
performed an exhaustive parameter study here.Comment: Accepted for publication in Astrophysical Journal. 19 pages,
including 8 figure
Recommended from our members
Body camera footage leads to lower judgments of intent than dash camera footage.
Police departments use body-worn cameras (body cams) and dashboard cameras (dash cams) to monitor the activity of police officers in the field. Video from these cameras informs review of police conduct in disputed circumstances, often with the goal of determining an officer's intent. Eight experiments (N = 2,119) reveal that body cam video of an incident results in lower observer judgments of intentionality than dash cam video of the same incident, an effect documented with both scripted videos and real police videos. This effect was due, in part, to variation in the visual salience of the focal actor: the body cam wearer is typically less visually salient when depicted in body versus dash cam video, which corresponds with lower observer intentionality judgments. In showing how visual salience of the focal actor may introduce unique effects on observer judgment, this research establishes an empirical platform that may inform public policy regarding surveillance of police conduct
- …