146 research outputs found

    Despite progress on gender equity in US politics, female journalists and candidates do little to diversify debate agendas

    Get PDF
    Electoral debates can greatly influence the issue priorities of the public through the media’s agenda-setting function; however, debates have not always reflected the issue priorities of the public. As more women seek public office, little is known about gender’s role in shaping debate agendas. In new research examining questions from US presidential debates, Jason Turcotte and Newly Paul find that although female voters participating in debates refocus the agenda toward issues of greater consequence to women, female candidates and journalists fail to increase the emphasis on women’s issues. The implications of this mean that women’s issues are often muted in debates, and the presence of female candidates and journalists does little to foster greater diversity in issue focus

    The rules of engagement : what formats, moderators, and news values tell us about the content of electoral debates

    Get PDF
    U.S. democracy is one of the most inclusive in the world, yet levels of political knowledge and engagement remain markedly low. Moreover, the news media’s coverage of elections inadequately informs and engages the public. These shortcomings underscore the importance of campaign events like electoral debates – events that are designed not only to educate the public but also to provide the public a more active role in the electoral process. Journalistic news norms and values wield tremendous power over campaign news agendas – including post-debate coverage – but the extent to which they influence debate agendas remains unclear. Given what we know about patterns of campaign news coverage, a closer look at mediated debate agendas is warranted. To date, no comprehensive data on debate agendas exist. With a unique sample of debate questions spanning 52 years of electoral campaigns – including general election, primary, and state-level debates – this content analysis is the first of its kind to examine the debate agenda over time and across electoral contexts. This dissertation determines not only the extent to which news norms and routines influence electoral debate agendas but also the conditions (e.g. rules, formats, moderators, question sources) predictive of particular debate questions. In short, this study provides the first systemic insight into what influences the debate agenda and why we should care about the questions posed to the candidates. The findings presented herein suggest that debates are considerably more policy-driven than campaign news coverage; however, content and tone of agendas vary according to format rules, moderator characteristics, and question source. I find that local journalists offer a more substantive and less attack-driven agenda than members of the national press corps; that, contrary to expectations, nonprofit journalists are actually less substantive than commercial press in the debate questions they generate; and public influence through town hall formats does little to help nor hinder the substance of debate agendas. These findings are discussed in a broader democratic context, and the research presented herein offers organizers of these events best practices for future debates and recommendations for preserving their relevance and substance

    A new free-surface stabilization algorithm for geodynamical modelling:Theory and numerical tests

    Get PDF
    The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for computational convenience, numerical models have often used simpler approximations that do not involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models with a computational free surface typically confront stability problems when the time step is bigger than the viscous relaxation time. The small time step required for stability (<2. Kyr) makes this type of model computationally intensive, so there remains a need to develop strategies that mitigate the stability problem by making larger (at least ~10 Kyr) time steps stable and accurate. Here we present a new free-surface stabilization algorithm for finite element codes which solves the stability problem by adding to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or Lagrangian grids. It includes α and β parameters to respectively control both the vertical and the horizontal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a decaying high-order sinusoidal topography test, (3) a Rayleigh-Taylor instability test, and (4) a steep-slope test. For these tests, we investigate which α and β parameters give the best results in terms of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly more accurate and stable for steep slopes, and also conclude that, for longer time steps, the optimal α controlling factor for both approaches is ~2/3, instead of the 1/2 Crank-Nicolson parameter inferred from a linearized accuracy analysis. This more-implicit value coincides with the velocity factor for a Galerkin time discretization applied to our penalization term using linear shape functions in time

    Controls of faulting and reaction kinetics on serpentinization and double Benioff zones

    Get PDF
    The subduction of partially serpentinized oceanic mantle may potentially be the key geologic process leading to the regassing of Earth's mantle and also has important consequences for subduction zone processes such as element cycling, slab deformation, and intermediate-depth seismicity. However, little is known about the quantity of water that is retained in the slab during mantle serpentinization and the pattern of serpentinization that may occur during bending-related faulting; an initial state that is essential for quantifying subsequent dehydration processes. We present a 2-D reactive-flow model simulating hydration processes in the presence of faulting at the trench outer-rise. We find that the temperature dependence of the serpentinization rate in conjunction with outer-rise faulting results in plate age and speed dependent patterns of hydration. Serpentinization also results in a reduction in surface heat flux toward the trench caused by advective downflow of seawater into the reaction region. Observed heat flow reductions are larger than the reduction due to the minimum-water downflow needed for partial serpentinization, predicting that active hydrothermal vents and chemosynthetic communities should also be associated with bend-fault serpentinization. Our model results agree with previous studies that the lower plane of double Benioff zones can be generated due to dehydration of serpentinized mantle at depth. More importantly, the depth-dependent pattern of serpentinization including reaction kinetics predicts a separation between the two Benioff planes consistent with seismic observations

    The SPARC Toroidal Field Model Coil Program

    Full text link
    The SPARC Toroidal Field Model Coil (TFMC) Program was a three-year effort between 2018 and 2021 that developed novel Rare Earth Yttrium Barium Copper Oxide (REBCO) superconductor technologies and then successfully utilized these technologies to design, build, and test a first-in-class, high-field (~20 T), representative-scale (~3 m) superconducting toroidal field coil. With the principal objective of demonstrating mature, large-scale, REBCO magnets, the project was executed jointly by the MIT Plasma Science and Fusion Center (PSFC) and Commonwealth Fusion Systems (CFS). The TFMC achieved its programmatic goal of experimentally demonstrating a large-scale high-field REBCO magnet, achieving 20.1 T peak field-on-conductor with 40.5 kA of terminal current, 815 kN/m of Lorentz loading on the REBCO stacks, and almost 1 GPa of mechanical stress accommodated by the structural case. Fifteen internal demountable pancake-to-pancake joints operated in the 0.5 to 2.0 nOhm range at 20 K and in magnetic fields up to 12 T. The DC and AC electromagnetic performance of the magnet, predicted by new advances in high-fidelity computational models, was confirmed in two test campaigns while the massively parallel, single-pass, pressure-vessel style coolant scheme capable of large heat removal was validated. The REBCO current lead and feeder system was experimentally qualified up to 50 kA, and the crycooler based cryogenic system provided 600 W of cooling power at 20 K with mass flow rates up to 70 g/s at a maximum design pressure of 20 bar-a for the test campaigns. Finally, the feasibility of using passive, self-protection against a quench in a fusion-scale NI TF coil was experimentally assessed with an intentional open-circuit quench at 31.5 kA terminal current.Comment: 17 pages 9 figures, overview paper and the first of a six-part series of papers covering the TFMC Progra

    The SPARC Toroidal Field Model Coil Program

    Get PDF

    Estimation of Xmax_{max} for air showers measured at IceCube with elevated radio antennas of a prototype surface station

    Get PDF

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p
    • …
    corecore