16 research outputs found

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    A Dynamic Reconfigurable CPLD Architecture for Structured ASIC Technology

    Full text link

    The Read Out Controller for the ATLAS New Small Wheel

    No full text
    In the upgrade process of the ATLAS detector, the innermost stations of the endcaps (Small Wheels, SW) will be replaced. The New Small Wheel (NSW) will have two chamber technologies, one for the Level-1 trigger function (small-strip Thin Gap Chambers, sTGC) and one primarily dedicated to precision tracking (Micromegas detectors, MM). Custom front-end Application Specific Integrated Circuits (ASICs) will be used to read and filter information from both the sTGC and MM detectors. In the context of the New Small Wheel data path, we designed the Read Out Controller (ROC) ASIC for handling, preprocessing and formatting the data generated by the NSW VMM upstream chips. The ROC will concentrate the data streams from 8 VMMs, filter data based on the BCID and transmit the data to FELIX via the L1DDC. ROC is composed of 8 VMM Capture modules, a cross-bar and 4 SubROC modules. The output data is sent via 4 high-speed e-links

    Measurements of ttˉt\bar{t} differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in pppp collisions at s=13\sqrt{s}=13\, TeV using the ATLAS detector

    No full text
    Measurements are made of differential cross-sections of highly boosted pair-produced top quarks as a function of top-quark and ttˉt\bar{t} system kinematic observables using proton--proton collisions at a center-of-mass energy of s=13\sqrt{s} = 13 TeV. The data set corresponds to an integrated luminosity of 36.136.1 fb1^{-1}, recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Events with two large-radius jets in the final state, one with transverse momentum pT>500p_{\rm T} > 500 GeV and a second with pT>350p_{\rm T}>350 GeV, are used for the measurement. The top-quark candidates are separated from the multijet background using jet substructure information and association with a bb-tagged jet. The measured spectra are corrected for detector effects to a particle-level fiducial phase space and a parton-level limited phase space, and are compared to several Monte Carlo simulations by means of calculated χ2\chi^2 values. The cross-section for ttˉt\bar{t} production in the fiducial phase-space region is 292±7 (stat)±76(syst)292 \pm 7 \ \rm{(stat)} \pm 76 \rm{(syst)} fb, to be compared to the theoretical prediction of 384±36384 \pm 36 fb
    corecore