435 research outputs found
Real-time ISEE data system
A real-time ISEE data system directed toward predicting geomagnetic substorms and storms is discussed. Such a system may allow up to 60+ minutes advance warning of magnetospheric substorms and up to 30 minute warnings of geomagnetic storms (and other disturbances) induced by high-speed streams and solar flares. The proposed system utilizes existing capabilities of several agencies (NASA, NOAA, USAF), and thereby minimizes costs. This same concept may be applicable to data from other spacecraft, and other NASA centers; thus, each individual experimenter can receive quick-look data in real time at his or her base institution
Energetic particles of the outer regions of planetary magnetospheres
High energy particles, with energies above those attainable by adiabatic or steady-state electric field acceleration, have been observed in and around the outer regions of planetary magnetospheres. Acceleration by large amplitude sporadic cross-tail electric fields over an order of magnitude greater than steady-state convection fields is proposed as a source of these particles. It is suggested that such explosive electric fields will occur intermittently in the vicinity of the tail neutral line in the expansive phase of substorms. Laboratory and satellite evidence are used to estimate this electric potential for substorms at earth; values of 500 kilovolts to 2 megavolts are calculated, in agreement with particle observations. It is further suggested that these particles, which have been accelerated in the night side magnetosphere, drift to the dayside on closed field lines, and under certain interplanetary conditions can escape to regions upstream of the bow shock
The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF <I>B</I><sub>Z</sub> variances, low solar wind speeds and low solar magnetic fields
Minima in geomagnetic activity (MGA) at Earth at the ends of SC23 and SC22
have been identified. The two MGAs (called MGA23 and MGA22, respectively)
were present in 2009 and 1997, delayed from the sunspot number minima in
2008 and 1996 by ~1/2–1 years. Part of the solar and interplanetary
causes of the MGAs were exceptionally low solar (and thus low
interplanetary) magnetic fields. Another important factor in MGA23 was the
disappearance of equatorial and low latitude coronal holes and the
appearance of midlatitude coronal holes. The location of the holes relative
to the ecliptic plane led to low solar wind speeds and low IMF (<I>B</I><sub>z</sub>)
variances (σ<sub>Bz</sub><sup>2</sup>) and normalized variances (σ<sub>Bz</sub><sup>2</sup>/<I>B</I><sub>0</sub><sup>2</sup>) at Earth, with concomitant reduced solar
wind-magnetospheric energy coupling. One result was the lowest ap indices in
the history of ap recording. The results presented here are used to comment
on the possible solar and interplanetary causes of the low geomagnetic
activity that occurred during the Maunder Minimum
Multiple spacecraft observations of interplanetary shocks: Characteristics of the upstream ULF turbulence
All interplanetary shocks observed by ISEE-3 and either ISEE-1 or ISEE-2 or both in 1978 and 1979 are examined for evidence of upstream waves. In order to characterize the properties of these shocks it is necessary to determine accurate shock normals. An overdetermined set of equations were inverted to obtain shock normals, velocities and error estimates for all these shocks. Tests of the method indicate it is quite reliable. Using these normals the Mach number and angle were between the interplanetary magnetic field and the shock normal for each shock. The upstream waves were separated into two classes: whistler mode precursors which occur at low Mach numbers and upstream turbulence whose amplitude at Mach numbers greater than 1.5 is controlled by the angle of the field to the shock normal. The former waves are right hand circularly polarized and quite monochromatic. The latter waves are more linearly polarized and have a broadband featureless spectrum
Model for vortex turbulence with discontinuities in the solar wind
International audienceA model of vortex with embedded discontinuities in plasma flow is developed in the framework of ideal MHD in a low b plasma. Vortex structures are considered as a result of 2-D evolution of nonlinear shear Alfvén waves in the heliosphere. Physical properties of the solutions and vector fields are analyzed and the observational aspects of the model are discussed. The ratio of normal components to the discontinuity Br /Vr can be close to -2. The alignment between velocity and magnetic field vectors takes place. Spacecraft crossing such vortices will typically observe a pair of discontinuities, but with dissimilar properties. Occurrence rate for different discontinuity types is estimated and agrees with observations in high-speed solar wind stream. Discontinuity crossing provides a backward rotation of magnetic field vector and can be observed as part of a backward arc. The Ulysses magnetometer data obtained in the fast solar wind are compared with the results of theoretical modelling
On the acceleration of ions by interplanetary shock waves. 3: High time resolution observations of CIR proton events
Observations within + or - 3 hours of corotating interaction region (CIR) shock waves of proton intensities, pitch angle distribution and crude differential energy spectra of the range of 0.6 E sub p 3.4 MeV are presented. The principle result is the evidence for the persistent flow of particles away from the shock. The observations are found to be in good agreement with the hypothesis of local interplanetary shock acceleration by the shock drift and compression mechanisms. The same set of observations strongly suggest that transit time damping does not play an important role in the acceleration of protons to 1 MeV in the immediate vicinity of CIR shocks
Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event
International audienceThe prompt penetration of interplanetary electric fields (IEFs) to the dayside low-latitude ionosphere during the first ~2 h of a superstorm is estimated and applied to a modified NRL SAMI2 code for the 30 October 2003 event. In our simulations, the dayside ionospheric O+ is convected to higher altitudes (~600 km) and higher latitudes (~±25° to 30°), forming highly displaced equatorial ionospheric anomaly (EIA) peaks. This feature plus others are consistent with previously published CHAMP electron (TEC) measurements and with the dayside superfountain model. The rapid upward motion of the O+ ions causes neutral oxygen (O) uplift due to ion-neutral drag. It is estimated that above ~400 km altitude the O densities within the displaced EIAs can be increased substantially over quiet time values. The latter feature will cause increased drag for low-altitude satellites. This newly predicted phenomenon is expected to be typical for superstorm/IEF events
Association of Alfvén waves and proton cyclotron waves with electrostatic bipolar pulses: magnetic hole events observed by Polar
International audienceTwo magnetic hole events observed by Polar on 20 May 1996 when it was in the polar cap/polar cusp boundary layer are studied. Low-frequency waves, consisting of nonlinear Alfvén waves and large amplitude (±14nT peak-to-peak) obliquely propagating proton cyclotron waves (with frequency f~0.6 to 0.7 fcp), accompanied by electric bipolar pulses (electron holes) and electron heating have been observed located within magnetic holes. It is shown that low-frequency waves can provide free energy to drive some high frequency instabilities which saturate by trapping electrons, thus, leading to the generation of electron holes
- …