369 research outputs found
Measurement of the 240,242Pu(n,f) cross section at the CERN n_TOF facility
Knowledge of neutron cross sections of various plutonium isotopes and other minor actinides is crucial for the design of advanced nuclear systems. The 240, 242Pu(n,f) cross sections were measured at the CERN n_TOF facility, taking advantage of the wide energy range (from thermal to GeV) and the high instantaneous flux of the neutron beam. In this work, preliminary results for 242Pu are presented along with a theoretical cross section calculation performed with the EMPIRE code.Postprint (published version
Pulse processing routines for neutron time-of-flight data
A pulse shape analysis framework is described, which was developed for
n_TOF-Phase3, the third phase in the operation of the n_TOF facility at CERN.
The most notable feature of this new framework is the adoption of generic pulse
shape analysis routines, characterized by a minimal number of explicit
assumptions about the nature of pulses. The aim of these routines is to be
applicable to a wide variety of detectors, thus facilitating the introduction
of the new detectors or types of detectors into the analysis framework. The
operational details of the routines are suited to the specific requirements of
particular detectors by adjusting the set of external input parameters. Pulse
recognition, baseline calculation and the pulse shape fitting procedure are
described. Special emphasis is put on their computational efficiency, since the
most basic implementations of these conceptually simple methods are often
computationally inefficient.Comment: 13 pages, 10 figures, 5 table
Measurement of the240Pu(n,f) cross-section at the CERN n-TOF facility: First results from EAR-2
The accurate knowledge of neutron cross-sections of a variety of plutonium isotopes and other minor
actinides, such as neptunium, americium and curium, is crucial for feasibility and performance studies of advanced
nuclear systems (Generation-IV reactors, Accelerator Driven Systems). In this context, the240Pu(n,f) cross-section
was measured with the time-of-flight technique at the CERN n-TOF facility at incident neutron energies ranging from
thermal to several MeV. The present measurement is the first to have been performed at n-TOF's newly commissioned
Experimental Area II (EAR-2), which is located at the end of an 18 m neutron beam-line and features a neutron fluence
that is 25-30 times higher with respect to the existing 185 m flight-path (EAR-1), as well as stronger suppression of
sample-induced backgrounds, due to the shorter times-of-flight involved. Preliminary results are presented. © 2015,
CERN. All rights reserved.Postprint (published version
The measurement programme at the neutron time-of-flight facility n-TOF at CERN
Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility n-TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n-TOF will be presented
Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics
The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n-TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well
Measurement of 73 Ge(n,γ) cross sections and implications for stellar nucleosynthesis
© 2019 The Author(s). Published by Elsevier B.V.73 Ge(n,γ) cross sections were measured at the neutron time-of-flight facility n_TOF at CERN up to neutron energies of 300 keV, providing for the first time experimental data above 8 keV. Results indicate that the stellar cross section at kT=30 keV is 1.5 to 1.7 times higher than most theoretical predictions. The new cross sections result in a substantial decrease of 73 Ge produced in stars, which would explain the low isotopic abundance of 73 Ge in the solar system.Peer reviewe
Present Status and Future Programs of the n_TOF Experiment
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.The most relevant measurements performed up to now and foreseen for the future will be presented in this contribution. The overall efficiency of the experimental program and the range of possible measurements achievable with the construction of a second experimental area (EAR-2), vertically located 20 m on top of the n_TOF spallation target, might offer a substantial improvement in measurement sensitivities. A feasibility study of the possible realisation of the installation extension will be also presented
Measurement of the Ge 70 (n,γ) cross section up to 300 keV at the CERN n-TOF facility
©2019 American Physical Society.Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,γ) cross section on Ge70, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n-TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT=5 keV to kT=100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sections are in agreement with Walter and Beer (1985) over most of the neutron energy range covered, while they are systematically smaller for neutron energies above 150 keV. We have calculated isotopic abundances produced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60-80.Peer reviewedFinal Published versio
Measurement of the 240Pu(n,f) cross-section at the CERN n-TOF facility : First results from experimental area II (EAR-2)
The accurate knowledge of the neutron-induced fission cross-sections of actinides and other isotopes involved in the nuclear fuel cycle is essential for the design of advanced nuclear systems, such as Generation-IV nuclear reactors. Such experimental data can also provide the necessary feedback for the adjustment of nuclear model parameters used in the evaluation process, resulting in the further development of nuclear fission models. In the present work, the 240Pu(n,f) cross-section was measured at CERN's n-TOF facility relative to the well-known 235U(n,f) cross section, over a wide range of neutron energies, from meV to almost MeV, using the time-of-flight technique and a set-up based on Micromegas detectors. This measurement was the first experiment to be performed at n-TOF's new experimental area (EAR-2), which offers a significantly higher neutron flux compared to the already existing experimental area (EAR-1). Preliminary results as well as the experimental procedure, including a description of the facility and the data handling and analysis, are presented
- …