394 research outputs found

    Formation and Evolution of Planetary Systems in Presence of Highly Inclined Stellar Perturbers

    Get PDF
    The presence of highly eccentric extrasolar planets in binary stellar systems suggests that the Kozai effect has played an important role in shaping their dynamical architectures. However, the formation of planets in inclined binary systems poses a considerable theoretical challenge, as orbital excitation due to the Kozai resonance implies destructive, high-velocity collisions among planetesimals. To resolve the apparent difficulties posed by Kozai resonance, we seek to identify the primary physical processes responsible for inhibiting the action of Kozai cycles in protoplanetary disks. Subsequently, we seek to understand how newly-formed planetary systems transition to their observed, Kozai-dominated dynamical states. We find that theoretical difficulties in planet formation arising from the presence of a distant companion star, posed by the Kozai effect and other secular perturbations, can be overcome by a proper account of gravitational interactions within the protoplanetary disk. In particular, fast apsidal recession induced by disk self-gravity tends to erase the Kozai effect, and ensure that the disk's unwarped, rigid structure is maintained. Subsequently, once a planetary system has formed, the Kozai effect can continue to be wiped out as a result of apsidal precession, arising from planet-planet interactions. However, if such a system undergoes a dynamical instability, its architecture may change in such a way that the Kozai effect becomes operative. The results presented here suggest that planetary formation in highly inclined binary systems is not stalled by perturbations, arising from the stellar companion. Consequently, planet formation in binary stars is probably no different from that around single stars on a qualitative level. Furthermore, it is likely that systems where the Kozai effect operates, underwent a transient phase of dynamical instability in the past.Comment: 9 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    Inclined asymmetric librations in exterior resonances

    Full text link
    Librational motion in celestial mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π\pi, the libration is called asymmetric. In the context of the planar circular restricted three-body problem (CRTBP), asymmetric librations have been identified for the exterior mean-motion resonances (MMRs) 1:2, 1:3 etc. as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the 3-dimensional space. We employ the computational approach of Markellos (1978) and compute families of asymmetric periodic orbits and their stability. Stable, asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO= trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2-resonant, inclined asymmetric librations. For the stable 1:2 TNOs librators, we find that their libration seems to be related with the vertically stable planar asymmetric orbits of our model, rather than the 3-dimensional ones found in the present study.Comment: Accepted for publication in CeMD

    Vertical instability and inclination excitation during planetary migration

    Full text link
    We consider a two-planet system, which migrates under the influence of dissipative forces that mimic the effects of gas-driven (Type II) migration. It has been shown that, in the planar case, migration leads to resonant capture after an evolution that forces the system to follow families of periodic orbits. Starting with planets that differ slightly from a coplanar configuration, capture can, also, occur and, additionally, excitation of planetary inclinations has been observed in some cases. We show that excitation of inclinations occurs, when the planar families of periodic orbits, which are followed during the initial stages of planetary migration, become vertically unstable. At these points, {\em vertical critical orbits} may give rise to generating stable families of 3D3D periodic orbits, which drive the evolution of the migrating planets to non-coplanar motion. We have computed and present here the vertical critical orbits of the 2/12/1 and 3/13/1 resonances, for various values of the planetary mass ratio. Moreover, we determine the limiting values of eccentricity for which the "inclination resonance" occurs.Comment: Accepted for publication in Celestial Mechanics and Dynamical Astronom

    Reconstructing the size distribution of the primordial Main Belt

    Full text link
    In this work we aim to constrain the slope of the size distribution of main-belt asteroids, at their primordial state. To do so we turn out attention to the part of the main asteroid belt between 2.82 and 2.96~AU, the so-called "pristine zone", which has a low number density of asteroids and few, well separated asteroid families. Exploiting these unique characteristics, and using a modified version of the hierarchical clustering method we are able to remove the majority of asteroid family members from the region. The remaining, background asteroids should be of primordial origin, as the strong 5/2 and 7/3 mean-motion resonances with Jupiter inhibit transfer of asteroids to and from the neighboring regions. The size-frequency distribution of asteroids in the size range 17<D(km)<7017<D(\rm{km})<70 has a slope q≃−1q\simeq-1. Using Monte-Carlo methods, we are able to simulate, and compensate for the collisional and dynamical evolution of the asteroid population, and get an upper bound for its size distribution slope q=−1.43q=-1.43. In addition, applying the same 'family extraction' method to the neighboring regions, i.e. the middle and outer belts, and comparing the size distributions of the respective background populations, we find statistical evidence that no large asteroid families of primordial origin had formed in the middle or pristine zones

    Medium Earth Orbit dynamical survey and its use in passive debris removal

    Full text link
    The Medium Earth Orbit (MEO) region hosts satellites for navigation, communication, and geodetic/space environmental science, among which are the Global Navigation Satellites Systems (GNSS). Safe and efficient removal of debris from MEO is problematic due to the high cost for maneuvers needed to directly reach the Earth (reentry orbits) and the relatively crowded GNSS neighborhood (graveyard orbits). Recent studies have highlighted the complicated secular dynamics in the MEO region, but also the possibility of exploiting these dynamics, for designing removal strategies. In this paper, we present our numerical exploration of the long-term dynamics in MEO, performed with the purpose of unveiling the set of reentry and graveyard solutions that could be reached with maneuvers of reasonable DV cost. We simulated the dynamics over 120-200 years for an extended grid of millions of fictitious MEO satellites that covered all inclinations from 0 to 90deg, using non-averaged equations of motion and a suitable dynamical model that accounted for the principal geopotential terms, 3rd-body perturbations and solar radiation pressure (SRP). We found a sizeable set of usable solutions with reentry times that exceed ~40years, mainly around three specific inclination values: 46deg, 56deg, and 68deg; a result compatible with our understanding of MEO secular dynamics. For DV <= 300 m/s (i.e., achieved if you start from a typical GNSS orbit and target a disposal orbit with e<0.3), reentry times from GNSS altitudes exceed ~70 years, while low-cost (DV ~= 5-35 m/s) graveyard orbits, stable for at lest 200 years, are found for eccentricities up to e~0.018. This investigation was carried out in the framework of the EC-funded "ReDSHIFT" project.Comment: 39 pages, 23 figure

    Constructing the secular architecture of the solar system I: The giant planets

    Full text link
    Using numerical simulations, we show that smooth migration of the giant planets through a planetesimal disk leads to an orbital architecture that is inconsistent with the current one: the resulting eccentricities and inclinations of their orbits are too small. The crossing of mutual mean motion resonances by the planets would excite their orbital eccentricities but not their orbital inclinations. Moreover, the amplitudes of the eigenmodes characterising the current secular evolution of the eccentricities of Jupiter and Saturn would not be reproduced correctly; only one eigenmode is excited by resonance-crossing. We show that, at the very least, encounters between Saturn and one of the ice giants (Uranus or Neptune) need to have occurred, in order to reproduce the current secular properties of the giant planets, in particular the amplitude of the two strongest eigenmodes in the eccentricities of Jupiter and Saturn.Comment: Astronomy & Astrophysics (2009) in pres
    • …
    corecore