36,951 research outputs found
Hybridized solid-state qubit in the charge-flux regime
Most superconducting qubits operate in a regime dominated by either the
electrical charge or the magnetic flux. Here we study an intermediate case: a
hybridized charge-flux qubit with a third Josephson junction (JJ) added into
the SQUID loop of the Cooper-pair box. This additional JJ allows the optimal
design of a low-decoherence qubit. Both charge and flux noises are
considered. Moreover, we show that an efficient quantum measurement of either
the current or the charge can be achieved by using different area sizes for the
third JJ.Comment: 7 pages, 5 figures. Phys. Rev. B, in pres
Scalable quantum computing with Josephson charge qubits
A goal of quantum information technology is to control the quantum state of a
system, including its preparation, manipulation, and measurement. However,
scalability to many qubits and controlled connectivity between any selected
qubits are two of the major stumbling blocks to achieve quantum computing (QC).
Here we propose an experimental method, using Josephson charge qubits, to
efficiently solve these two central problems. The proposed QC architecture is
scalable since any two charge qubits can be effectively coupled by an
experimentally accessible inductance. More importantly, we formulate an
efficient and realizable QC scheme that requires only one (instead of two or
more) two-bit operation to implement conditional gates.Comment: 4 pages, 2 figure
Semimetalic graphene in a modulated electric potential
The -electronic structure of graphene in the presence of a modulated
electric potential is investigated by the tight-binding model. The low-energy
electronic properties are strongly affected by the period and field strength.
Such a field could modify the energy dispersions, destroy state degeneracy, and
induce band-edge states. It should be noted that a modulated electric potential
could make semiconducting graphene semimetallic, and that the onset period of
such a transition relies on the field strength. There exist infinite
Fermi-momentum states in sharply contrast with two crossing points (Dirac
points) for graphene without external fields. The finite density of states
(DOS) at the Fermi level means that there are free carriers, and, at the same
time, the low DOS spectrum exhibits many prominent peaks, mainly owing to the
band-edge states.Comment: 12pages, 5 figure
Charge echo in a Cooper-pair box
A spin-echo-type technique is applied to an artificial two-level system that
utilizes charge degree of freedom in a small superconducting electrode.
Gate-voltage pulses are used to produce the necessary pulse sequence in order
to eliminate the inhomogeneity effect in the time-ensemble measurement and to
obtain refocused echo signals. Comparison of the decay time of the observed
echo signal with estimated decoherence time suggests that low-frequency
energy-level fluctuations due to the 1/f charge noise dominate the dephasing in
the system.Comment: 4 pages, 3 figure
EffiTest: Efficient Delay Test and Statistical Prediction for Configuring Post-silicon Tunable Buffers
At nanometer manufacturing technology nodes, process variations significantly
affect circuit performance. To combat them, post- silicon clock tuning buffers
can be deployed to balance timing bud- gets of critical paths for each
individual chip after manufacturing. The challenge of this method is that path
delays should be mea- sured for each chip to configure the tuning buffers
properly. Current methods for this delay measurement rely on path-wise
frequency stepping. This strategy, however, requires too much time from ex-
pensive testers. In this paper, we propose an efficient delay test framework
(EffiTest) to solve the post-silicon testing problem by aligning path delays
using the already-existing tuning buffers in the circuit. In addition, we only
test representative paths and the delays of other paths are estimated by
statistical delay prediction. Exper- imental results demonstrate that the
proposed method can reduce the number of frequency stepping iterations by more
than 94% with only a slight yield loss.Comment: ACM/IEEE Design Automation Conference (DAC), June 201
- …