256 research outputs found
Recommended from our members
Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures
A key feature of two-dimensional materials is that the sign and concentration of their carriers can be externally controlled with techniques such as electrostatic gating. However, conventional electrostatic gating has limitations, including a maximum carrier density set by the dielectric breakdown, and ionic liquid gating and direct chemical doping also suffer from drawbacks. Here, we show that an electron-beam-induced doping technique can be used to reversibly write high-resolution doping patterns in hexagonal boron nitride-encapsulated graphene and molybdenum disulfide (MoS2) van der Waals heterostructures. The doped MoS2 device exhibits an order of magnitude decrease of subthreshold swing compared with the device before doping, whereas the doped graphene devices demonstrate a previously inaccessible regime of high carrier concentration and high mobility, even at room temperature. We also show that the approach can be used to write high-quality p–n junctions and nanoscale doping patterns, illustrating that the technique can create nanoscale circuitry in van der Waals heterostructures
Recommended from our members
Strong correlations and orbital texture in single-layer 1T-TaSe2
Strong electron correlation can induce Mott insulating behaviour and produce intriguing states of matter such as unconventional superconductivity and quantum spin liquids. Recent advances in van der Waals material synthesis enable the exploration of Mott systems in the two-dimensional limit. Here we report characterization of the local electronic properties of single- and few-layer 1T-TaSe2 via spatial- and momentum-resolved spectroscopy involving scanning tunnelling microscopy and angle-resolved photoemission. Our results indicate that electron correlation induces a robust Mott insulator state in single-layer 1T-TaSe2 that is accompanied by unusual orbital texture. Interlayer coupling weakens the insulating phase, as shown by reduction of the energy gap and quenching of the correlation-driven orbital texture in bilayer and trilayer 1T-TaSe2. This establishes single-layer 1T-TaSe2 as a useful platform for investigating strong correlation physics in two dimensions
Changes in the Circadian Rhythm in Patients with Primary Glaucoma
Purpose
The current study was undertaken to investigate whether glaucoma affects the sleep quality and whether there is any difference between patients with primary glaucoma (primary open angle glaucoma, POAG and primary angle-closure glaucoma, PACG) and healthy subjects, using a validated self-rated questionnaire, the Pittsburgh Sleep Quality Index (PSQI).
Methods
The sleep quality of patients with POAG and PACG was tested against normal controls. Subjects were divided into three sub-groups according to age. Differences in the frequency of sleep disturbances (PSQI score >7) were assessed. The differences of sleep quality within the three groups and within the POAG group depending on the patients’ intraocular pressure (IOP) and impairment of visual field (VF) were also studied.
Results
92 POAG patients, 48 PACG patients and 199 controls were included. Sleep quality declined with age in control and POAG group (tendency chi-square, P0.05). No significant differences were found in POAG group between patients with a highest IOP in daytime and at nighttime (χ2-test, P>0.05).
Conclusions
The prevalence of sleep disorders was higher in patients with POAG and PACG than in controls. PACG patients seemed to have a more serious problem of sleep disorders than POAG patients between 61 to 80 years old. No correlation was found between the prevalence of sleep disorders and impairment of VF or the time when POAG patients showed a highest IOP
Conidiation Color Mutants of Aspergillus fumigatus Are Highly Pathogenic to the Heterologous Insect Host Galleria mellonella
The greater wax moth Galleria mellonella has been widely used as
a heterologous host for a number of fungal pathogens including Candida
albicans and Cryptococcus neoformans. A positive
correlation in pathogenicity of these yeasts in this insect model and animal
models has been observed. However, very few studies have evaluated the
possibility of applying this heterologous insect model to investigate virulence
traits of the filamentous fungal pathogen Aspergillus
fumigatus, the leading cause of invasive aspergillosis. Here, we have
examined the impact of mutations in genes involved in melanin biosynthesis on
the pathogenicity of A. fumigatus in the G.
mellonella model. Melanization in A. fumigatus confers
bluish-grey color to conidia and is a known virulence factor in mammal models.
Surprisingly, conidial color mutants in B5233 background that have deletions in
the defined six-gene cluster required for DHN-melanin biosynthesis caused
enhanced insect mortality compared to the parent strain. To further examine and
confirm the relationship between melanization defects and enhanced virulence in
the wax moth model, we performed random insertional mutagenesis in the Af293
genetic background to isolate mutants producing altered conidia colors. Strains
producing conidia of previously identified colors and of novel colors were
isolated. Interestingly, these color mutants displayed a higher level of
pathogenicity in the insect model compared to the wild type. Although some of
the more virulent color mutants showed increased resistance to hydrogen
peroxide, overall phenotypic characterizations including secondary metabolite
production, metalloproteinase activity, and germination rate did not reveal a
general mechanism accountable for the enhanced virulence of these color mutants
observed in the insect model. Our observations indicate instead, that
exacerbated immune response of the wax moth induced by increased exposure of
PAMPs (pathogen-associated molecular patterns) may cause self-damage that
results in increased mortality of larvae infected with the color mutants. The
current study underscores the limitations of using this insect model for
inferring the pathogenic potential of A. fumigatus strains in
mammals, but also points to the importance of understanding the innate immunity
of the insect host in providing insights into the pathogenicity level of
different fungal strains in this model. Additionally, our observations that
melanization defective color mutants demonstrate increased virulence in the
insect wax moth, suggest the potential of using melanization defective mutants
of native insect fungal pathogens in the biological control of insect
populations
Azimuthal anisotropy and correlations at large transverse momenta in and Au+Au collisions at = 200 GeV
Results on high transverse momentum charged particle emission with respect to
the reaction plane are presented for Au+Au collisions at =
200 GeV. Two- and four-particle correlations results are presented as well as a
comparison of azimuthal correlations in Au+Au collisions to those in at
the same energy. Elliptic anisotropy, , is found to reach its maximum at
GeV/c, then decrease slowly and remain significant up to
-- 10 GeV/c. Stronger suppression is found in the back-to-back
high- particle correlations for particles emitted out-of-plane compared to
those emitted in-plane. The centrality dependence of at intermediate
is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004
Azimuthal anisotropy in Au+Au collisions at sqrtsNN = 200 GeV
The results from the STAR Collaboration on directed flow (v_1), elliptic flow
(v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution
of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and
compared with results from other experiments and theoretical models. Results
for identified particles are presented and fit with a Blast Wave model.
Different anisotropic flow analysis methods are compared and nonflow effects
are extracted from the data. For v_2, scaling with the number of constituent
quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and
quark coalescence is discussed.Comment: 26 pages. As accepted by Phys. Rev. C. Text rearranged, figures
modified, but data the same. However, in Fig. 35 the hydro calculations are
corrected in this version. The data tables are available at
http://www.star.bnl.gov/central/publications/ by searching for "flow" and
then this pape
Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV
We report on the rapidity and centrality dependence of proton and anti-proton
transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as
measured by the STAR experiment at RHIC. Our results are from the rapidity and
transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons
and anti-protons, transverse mass distributions become more convex from
peripheral to central collisions demonstrating characteristics of collective
expansion. The measured rapidity distributions and the mean transverse momenta
versus rapidity are flat within |y|<0.5. Comparisons of our data with results
from model calculations indicate that in order to obtain a consistent picture
of the proton(anti-proton) yields and transverse mass distributions the
possibility of pre-hadronic collective expansion may have to be taken into
account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
Defining patient outcomes in stage IV colorectal cancer: a prospective study with baseline stratification according to disease resectability status
BACKGROUND: Stage IV colorectal cancer encompasses a broad patient population in which both curative and palliative management strategies may be used. In a phase II study primarily designed to assess the efficacy of capecitabine and oxaliplatin, we were able to prospectively examine the outcomes of patients with stage IV colorectal cancer according to the baseline resectability status. METHODS: At enrolment, patients were stratified into three subgroups according to the resectability of liver disease and treatment intent: palliative chemotherapy (subgroup A), conversion therapy (subgroup B) or neoadjuvant therapy (subgroup C). All patients received chemotherapy with capecitabine 2000 mg m(-2) on days 1-14 and oxaliplatin 130 mg m(-2) on day 1 repeated every 3 weeks. Imaging was repeated every four cycles where feasible liver resection was undertaken after four or eight cycles of chemotherapy. RESULTS: Of 128 enrolled patients, 74, 22 and 32 were stratified into subgroups A, B and C, respectively. Attempt at curative liver resection was undertaken in 10 (45%) patients in subgroup B and 19 (59%) in subgroup C. The median overall survival was 14.6, 24.5 and 52.9 months in subgroups A, B and C, respectively. For patients in subgroups B and C who underwent an attempt at curative resection, 3-year progression-free survival was 10% in subgroup B and 37% for subgroup C. CONCLUSIONS: This prospective study shows the wide variation in outcome according to baseline resectability status and highlights the potential clinical value of a modified staging system to distinguish between these patient subgroups. British Journal of Cancer (2010) 102, 255-261. doi:10.1038/sj.bjc.6605508 www.bjcancer.com (C) 2010 Cancer Research U
- …