5,433 research outputs found

    Speech Recognition Technology: Improving Speed and Accuracy of Emergency Medical Services Documentation to Protect Patients

    Get PDF
    Because hospital errors, such as mistakes in documentation, cause one sixth of the deaths each year in the United States, the accuracy of health records in the emergency medical services (EMS) must be improved. One possible solution is to incorporate speech recognition (SR) software into current tools used by EMS first responders. The purpose of this research was to determine if SR software could increase the efficiency and accuracy of EMS documentation to improve the safety for patients of EMS. An initial review of the literature on the performance of current SR software demonstrated that this software was not 99% accurate and therefore, errors in the medical documentation produced by the software could harm patients. The literature review also identified weaknesses of SR software that could be overcome so that the software would be accurate enough for use in EMS settings. These weaknesses included the inability to differentiate between similar phrases and the inability to filter out background noise. To find a solution, an analysis of natural language processing algorithms showed that the bag-of-words post processing algorithm has the ability to differentiate between similar phrases. This algorithm is the best suited for SR applications because it is simple yet effective compared to machine learning algorithms that required a large amount of training data. The findings suggested that if these weaknesses of current SR software are solved, then the software would potentially increase the efficiency and accuracy of EMS documentation. Further studies should integrate the bag-of-words post processing method into SR software and field test its accuracy in EMS settings.https://scholarscompass.vcu.edu/uresposters/1273/thumbnail.jp

    Energy harvesting over Rician fading channel: A performance analysis for half-duplex bidirectional sensor networks under hardware impairments

    Get PDF
    In this paper, a rigorous analysis of the performance of time-switching energy harvesting strategy that is applied for a half-duplex bidirectional wireless sensor network with intermediate relay over a Rician fading channel is presented to provide the exact-form expressions of the outage probability, achievable throughput and the symbol-error-rate (SER) of the system under the hardware impairment condition. Using the proposed probabilistic models for wireless channels between mobile nodes as well as for the hardware noises, we derive the outage probability of the system, and then the throughput and SER can be obtained as a result. Both exact analysis and asymptotic analysis at high signal-power-to-noise-ratio regime are provided. Monte Carlo simulation is also conducted to verify the analysis. This work confirms the effectiveness of energy harvesting applied in wireless sensor networks over a Rician fading channel, and can provide an insightful understanding about the effect of various parameters on the system performance.Web of Science186art. no. 1781

    Rateless codes-based secure communication employing transmit antenna selection and harvest-to-jam under joint effect of interference and hardware impairments

    Get PDF
    In this paper, we propose a rateless codes-based communication protocol to provide security for wireless systems. In the proposed protocol, a source uses the transmit antenna selection (TAS) technique to transmit Fountain-encoded packets to a destination in presence of an eavesdropper. Moreover, a cooperative jammer node harvests energy from radio frequency (RF) signals of the source and the interference sources to generate jamming noises on the eavesdropper. The data transmission terminates as soon as the destination can receive a sufficient number of the encoded packets for decoding the original data of the source. To obtain secure communication, the destination must receive sufficient encoded packets before the eavesdropper. The combination of the TAS and harvest-to-jam techniques obtains the security and efficient energy via reducing the number of the data transmission, increasing the quality of the data channel, decreasing the quality of the eavesdropping channel, and supporting the energy for the jammer. The main contribution of this paper is to derive exact closed-form expressions of outage probability (OP), probability of successful and secure communication (SS), intercept probability (IP) and average number of time slots used by the source over Rayleigh fading channel under the joint impact of co-channel interference and hardware impairments. Then, Monte Carlo simulations are presented to verify the theoretical results.Web of Science217art. no. 70

    Two-way half duplex decode and forward relaying network with hardware impairment over Rician fading channel: system performance analysis

    Get PDF
    In this paper, the system performance analysis of a two-way decode and forward (DF) relaying network over the Rician fading environment under hardware impairment effect is proposed, analyzed and demonstrated. In this analysis, the analytical mathematical expressions of the achievable throughput, the outage probability, and ergodic capacity were proposed, analyzed and demonstrated. After that, the effect of various system parameters on the system performance is deeply studied with closed-form expressions for the system performance. Finally, the analytical results are also demonstrated by Monte-Carlo simulation in comparison with the closed-form expressions. The numerical results demonstrated and convinced the effect of the system parameters on the system performance of the two-way DF relaying network. The results show that the analytical mathematical and simulated results match for all possible parameter values.Web of Science242787

    Energy harvesting-based spectrum access with incremental cooperation, relay selection and hardware noises

    Get PDF
    In this paper, we propose an energy harvesting (EH)-based spectrum access model in cognitive radio (CR) network. In the proposed scheme, one of available secondary transmitters (STs) helps a primary transmitter (PT) forward primary signals to a primary receiver (PR). Via the cooperation, the selected ST finds opportunities to access licensed bands to transmit secondary signals to its intended secondary receiver (SR). Secondary users are assumed to be mobile, hence, optimization of energy consumption for these users is interested. The EH STs have to harvest energy from the PT's radio-frequency (RF) signals to serve the PTPR communication as well as to transmit their signals. The proposed scheme employs incremental relaying technique in which the PR only requires the assistance from the STs when the transmission between PT and PR is not successful. Moreover, we also investigate impact of hardware impairments on performance of the primary and secondary networks. For performance evaluation, we derive exact and lower-bound expressions of outage probability (OP) over Rayleigh fading channel. Monte-Carlo simulations are performed to verify the theoretical results. The results present that the outage performance of both networks can be enhanced by increasing the number of the ST-SR pairs. In addition, the outage performance of both primary and secondary networks is severely degraded with the increasing of hardware impairment level. It is also shown that fraction of time used for EH and positions of the secondary users significantly impact on the system performance.Web of Science26125024

    Linear Query Approximation Algorithms for Non-monotone Submodular Maximization under Knapsack Constraint

    Full text link
    This work, for the first time, introduces two constant factor approximation algorithms with linear query complexity for non-monotone submodular maximization over a ground set of size nn subject to a knapsack constraint, DLA\mathsf{DLA} and RLA\mathsf{RLA}. DLA\mathsf{DLA} is a deterministic algorithm that provides an approximation factor of 6+ϵ6+\epsilon while RLA\mathsf{RLA} is a randomized algorithm with an approximation factor of 4+ϵ4+\epsilon. Both run in O(nlog(1/ϵ)/ϵ)O(n \log(1/\epsilon)/\epsilon) query complexity. The key idea to obtain a constant approximation ratio with linear query lies in: (1) dividing the ground set into two appropriate subsets to find the near-optimal solution over these subsets with linear queries, and (2) combining a threshold greedy with properties of two disjoint sets or a random selection process to improve solution quality. In addition to the theoretical analysis, we have evaluated our proposed solutions with three applications: Revenue Maximization, Image Summarization, and Maximum Weighted Cut, showing that our algorithms not only return comparative results to state-of-the-art algorithms but also require significantly fewer queries

    Time switching for wireless communications with full-duplex relaying in imperfect CSI condition

    Get PDF
    In this paper, we consider an amplify-and-forward (AF) full-duplex relay network (FDRN) using simultaneous wireless information and power transfer, where a battery-free relay node harvests energy from the received radio frequency (RF) signals from a source node and uses the harvested energy to forward the source information to destination node. The time-switching relaying (TSR) protocol is studied, with the assumption that the channel state information (CSI) at the relay node is imperfect. We deliver a rigorous analysis of the outage probability of the proposed system. Based on the outage probability expressions, the optimal time switching factor are obtained via the numerical search method. The simulation and numerical results provide practical insights into the effect of various system parameters, such as the time switching factor, the noise power, the energy harvesting efficiency, and the channel estimation error on the performance of this network. It is also observed that for the imperfect CSI case, the proposed scheme still can provide acceptable outage performance given that the channel estimation error is bounded in a permissible interval.Web of Science1094239422

    Security and reliability analysis of a two-way half-duplex wireless relaying network using partial relay selection and hybrid TPSR energy harvesting at relay nodes

    Get PDF
    In recent years, physical layer security has been considered as an effective method to enhance the information security beside the cryptographic techniques that are used in upper layers. In this paper, we provide the security analysis for a two-way relay network, where the two sources can only communicate through the intermediate relay nodes. In particular, we consider the scenario that there is an eavesdropper in the vicinity of one source node. Both reliability and security aspects are taken into consideration in our work. To enhance the reliability of communication, the intermediate relays are supplied with the energy harvested from the sources radio frequency (RF) signals using hybrid time-switching and power splitting (TPSR) protocol. Also, we apply the relay selection technique to select the best relay for the information exchange between two sources. Regarding security, the secrecy of information is improved with the help of friendly jammers nearby the eavesdropper. We provide the in-dept reliability and security analysis in terms of the closed-form expressions of the outage probability (OP) at the source nodes, the intercept probability (IP) at the eavesdropper, the secrecy outage probability (SOP), and the average secrecy capacity (ASC) of the system. Finally, the Monte Carlo simulations are also conducted to verify the correctness of our analysis and the effectiveness of the proposed scheme. Numerical results confirms that with the appropriate and feasible choices of involved parameters, both outage OP and IP can be kept at small values to guarantee the reliable and secure communication of the system.Web of Science818718118716

    Facile Template In-Situ Fabrication of ZnCo2O4 Nanoparticles with Highly Photocatalytic Activities under Visible-Light Irradiation

    Get PDF
    High specific surface area ZnCo2O4 nanoparticles were prepared via a sacrificial template accelerated hydrolysis by using nanoparticles of ZnO with highly polar properties as a template. The obtained ZnCo2O4 nanoparticles were characterized by the method of scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area measurements, Transmission electron microscopy (TEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The obtained nanoparticles were performed as a photocatalyst for the degradation of methylene blue in aqueous solution under visible irradiation. The photocatalytic degradation rate of methylene blue onto the synthesized ZnCo2O4 was higher than that of commercial ZnO and synthesized ZnO template. Copyright © 2019 BCREC Group. All rights reserved

    The novel method to reduce the silica content in lignin recovered from black liquor originating from rice straw

    Get PDF
    Difficulties in the production of lignin from rice straw because of high silica content in the recovered lignin reduce its recovery yield and applications as bio-fuel and aromatic chemicals. Therefore, the objective of this study is to develop a novel method to reduce the silica content in lignin from rice straw more effectively and selectively. The method is established by monitoring the precipitation behavior as well as the chemical structure of precipitate by single-stage acidification at different pH values of black liquor collected from the alkaline treatment of rice straw. The result illustrates the significant influence of pH on the physical and chemical properties of the precipitate and the supernatant. The simple two-step acidification of the black liquor at pilot-scale by sulfuric acid 20w/v% is applied to recover lignin at pH 9 and pH 3 and gives a percentage of silica removal as high as 94.38%. Following the developed process, the high-quality lignin could be produced from abundant rice straw at the industrial-scale
    corecore