449 research outputs found
Parsec-scale X-ray Flows in High-mass Star-forming Regions
The Chandra X-ray Observatory is providing remarkable new views of massive
star-forming regions, revealing all stages in the life cycle of high-mass stars
and their effects on their surroundings. We present a Chandra tour of several
high-mass star-forming regions, highlighting physical processes that
characterize the life of a cluster of high-mass stars, from deeply-embedded
cores too young to have established an HII region to superbubbles so large that
they shape our views of galaxies. Along the way we see that X-ray observations
reveal hundreds of stellar sources powering great HII region complexes,
suffused by both hard and soft diffuse X-ray structures caused by fast O-star
winds thermalized in wind-wind collisions or by termination shocks against the
surrounding media. Finally, we examine the effects of the deaths of high-mass
stars that remained close to their birthplaces, exploding as supernovae within
the superbubbles that these clusters created. We present new X-ray results on
W51 IRS2E and 30 Doradus and we introduce new data on Trumpler 14 in Carina and
the W3 HII region complexes W3 Main and W3(OH).Comment: 6 pages, 3 figures, to appear in the proceedings of IAU Symposium
227,"Massive Star Birth - A Crossroads of Astrophysics," eds. R. Cesaroni, E.
Churchwell, M. Felli, and C.M. Walmsle
Mitigating Charge Transfer Inefficiency in the Chandra X-ray Observatory's ACIS Instrument
The ACIS front-illuminated CCDs onboard the Chandra X-ray Observatory were
damaged in the extreme environment of the Earth's radiation belts, resulting in
enhanced charge transfer inefficiency (CTI). This produces a row dependence in
gain, event grade, and energy resolution. We model the CTI as a function of
input photon energy, including the effects of de-trapping (charge trailing),
shielding within an event (charge in the leading pixels of the 3X3 event island
protect the rest of the island by filling traps), and non-uniform spatial
distribution of traps. This technique cannot fully recover the degraded energy
resolution, but it reduces the position dependence of gain and grade
distributions. By correcting the grade distributions as well as the event
amplitudes, we can improve the instrument's quantum efficiency. We outline our
model for CTI correction and discuss how the corrector can improve
astrophysical results derived from ACIS data.Comment: Accepted by ApJ Letters; see
http://www.astro.psu.edu/users/townsley/cti
The Diverse Stellar Populations of the W3 Star Forming Complex
An 800 sq-arcmin mosaic image of the W3 star forming complex obtained with
the Chandra X-ray Observatory gives a valuable new view of the spatial
structure of its young stellar populations. The Chandra image reveals about
1300 faint X-ray sources, most of which are PMS stars in the cloud. Some, but
not all, of the high-mass stars producing hypercompact and ultracompact H II
(UCHII) regions are also seen, as reported in a previous study.
The Chandra images reveal three dramatically different embedded stellar
populations. The W3 Main cluster extends over 7 pc with about 900 X-ray stars
in a nearly-spherical distribution centered on the well-studied UCHII regions
and high-mass protostars. The cluster surrounding the prototypical UCHII region
W3(OH) shows a much smaller (<0.6 pc), asymmetrical, and clumpy distribution of
about 50 PMS stars. The massive star ionizing the W3 North H II region is
completely isolated without any accompanying PMS stars. In W3 Main, the
inferred ages of the widely distributed PMS stars are significantly older than
the inferred ages of the central OB stars illuminating the UCHIIs. We suggest
that different formation mechanisms are necessary to explain the diversity of
the W3 stellar populations: cluster-wide gravitational collapse with delayed OB
star formation in W3 Main, collect-and-collapse triggering by shock fronts in
W3(OH), and a runaway O star or isolated massive star formation in W3 North.Comment: To appear in the Astrophysical Journal. 21 pages, 5 figures. A
version with high-quality figures is available at
http://www.astro.psu.edu/users/edf/W3_Chandra.pd
Theoretical Modeling of the Thermal State of Accreting White Dwarfs Undergoing Classical Novae
White dwarfs experience a thermal renaissance when they receive mass from a
stellar companion in a binary. For accretion rates < 10^-8 Msun/yr, the freshly
accumulated hydrogen/helium envelope ignites in a thermally unstable manner
that results in a classical novae (CN) outburst and ejection of material. We
have undertaken a theoretical study of the impact of the accumulating envelope
on the thermal state of the underlying white dwarf (WD). This has allowed us to
find the equilibrium WD core temperatures (T_c), the classical nova ignition
masses (M_ign) and the thermal luminosities for WDs accreting at rates of
10^-11 - 10^-8 Msun/yr. These accretion rates are most appropriate to WDs in
cataclysmic variables (CVs) of P_orb <~ 7 hr, many of which accrete
sporadically as dwarf novae. We have included ^3He in the accreted material at
levels appropriate for CVs and find that it significantly modifies the CN
ignition mass. We compare our results with several others from the CN
literature and find that the inclusion of ^3He leads to lower M_ign for
>~ 10^-10 Msun/yr, and that for below this the particular author's
assumption concerning T_c, which we calculate consistently, is a determining
factor. Initial comparisons of our CN ignition masses with measured ejected
masses find reasonable agreement and point to ejection of material comparable
to that accreted.Comment: 14 pages, 11 figures; uses emulateapj; accepted by the Astrophysical
Journal; revised for clarity, added short discussion of diffusio
X-ray emission from the double-binary OB-star system QZ Car (HD 93206)
X-ray observations of the double-binary OB-star system QZ Car (HD 93206)
obtained with the Chandra X-ray Observatory over a period of roughly 2 years
are presented. The orbit of systems A (O9.7 I+b2 v, PA = 21 d) and B (O8 III+o9
v, PB = 6 d) are reasonably well sampled by the observations, allowing the
origin of the X-ray emission to be examined in detail. The X-ray spectra can be
well fitted by an attenuated three temperature thermal plasma model,
characterised by cool, moderate, and hot plasma components at kT ~ 0.2, 0.7,
and 2 keV, respectively, and a circumstellar absorption of ~ 0.2 x 10^22 cm-2.
Although the hot plasma component could be indicating the presence of wind-wind
collision shocks in the system, the model fluxes calculated from spectral fits,
with an average value of ~ 7 x 10^-13 erg s-1 cm-2, do not show a clear
correlation with the orbits of the two constituent binaries. A semi-analytical
model of QZ Car reveals that a stable momentum balance may not be established
in either system A or B. Yet, despite this, system B is expected to produce an
observed X-ray flux well in excess of the observations. If one considers the
wind of the O8 III star to be disrupted by mass transfer the model and
observations are in far better agreement, which lends support to the previous
suggestion of mass-transfer in the O8 III + o9 v binary. We conclude that the
X-ray emission from QZ Car can be reasonably well accounted for by a
combination of contributions mainly from the single stars and the mutual
wind-wind collision between systems A and B.Comment: 11 pages, 7 figures. Accepted for the ApJS Special Issue on the
Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011.
All 16 CCCP Special Issue papers are available at
http://cochise.astro.psu.edu/Carina_public/special_issue.html through 2011 at
leas
The CHANDRA HETGS X-ray Grating Spectrum of Eta Car
Eta Car may be the most massive and luminous star in the Galaxy and is
suspected to be a massive, colliding wind binary system. The CHANDRA X-ray
observatory has obtained a calibrated, high-resolution X-ray spectrum of the
star uncontaminated by the nearby extended soft X-ray emisssion. Our 89 ksec
CHANDRA observation with the High Energy Transmission Grating Spectrometer
(HETGS) shows that the hot gas near the star is non-isothermal. The temperature
distribution may represent the emission on either side of the colliding wind
bow shock, effectively ``resolving'' the shock. If so, the pre-shock wind
velocities are ~ 700 and ~ 1800 km/s in our analysis, and these velocities may
be interpreted as the terminal velocities of the winds from Eta Car and from
the hidden companion star. The forbidden-to-intercombination (f/i) line ratios
for the He-like ions of S, Si and Fe are large, indicating that the line
forming region lies far from the stellar photosphere. The iron fluorescent line
at 1.93 Angstrom, first detected by ASCA, is clearly resolved from the thermal
iron line in the CHANDRA grating spectrum. The Fe fluorescent line is weaker in
our CHANDRA observation than in any of the ASCA spectra. The CHANDRA
observation also provides an uninterrupted high-time resolution lightcurve of
the stellar X-ray emission from Eta Car and suggests that there was no
significant, coherent variability during the CHANDRA observation. The Eta Car
CHANDRA grating spectrum is unlike recently published X-ray grating spectra of
single massive stars in significant ways and is generally consistent with
colliding wind emission in a massive binary.Comment: revised after comments from referee and includes a new variability
analysis, taking into account the effects of CCD pileu
A Chandra/ACIS Study of 30 Doradus I. Superbubbles and Supernova Remnants
We present an X-ray tour of diffuse emission in the 30 Doradus star-forming
complex in the Large Magellanic Cloud using high-spatial-resolution X-ray
images and spatially-resolved spectra obtained with the Advanced CCD Imaging
Spectrometer aboard the Chandra X-ray Observatory. The dominant X-ray feature
of the 30 Doradus nebula is the intricate network of diffuse emission generated
by interacting stellar winds and supernovae working together to create vast
superbubbles filled with hot plasma. We construct maps of the region showing
variations in plasma temperature (T = 3--9 million degrees), absorption (N_H =
1--6 x 10^{21} cm^{-2}), and absorption-corrected X-ray surface brightness (S_X
= 3--126 x 10^{31} ergs s^{-1} pc^{-2}). Enhanced images reveal the pulsar wind
nebula in the composite supernova remnant N157B and the Chandra data show
spectral evolution from non-thermal synchrotron emission in the N157B core to a
thermal plasma in its outer regions. In a companion paper we show that R136,
the central massive star cluster, is resolved at the arcsecond level into
almost 100 X-ray sources. Through X-ray studies of 30 Doradus the complete life
cycle of such a massive stellar cluster can be revealed.Comment: 42 pages, 15 bitmapped figures, 4 tables; accepted to A
The Detonation Mechanism of the Pulsationally-Assisted Gravitationally-Confined Detonation Model of Type Ia Supernovae
We describe the detonation mechanism comprising the "Pulsationally Assisted"
Gravitationally Confined Detonation (GCD) model of Type Ia supernovae SNe Ia.
This model is analogous to the previous GCD model reported in Jordan et
al.(2008); however, the chosen initial conditions produce a substantively
different detonation mechanism, resulting from a larger energy release during
the deflagration phase. The resulting final kinetic energy and nickel-56 yields
conform better to observational values than is the case for the "classical" GCD
models. In the present class of models, the ignition of a deflagration phase
leads to a rising, burning plume of ash. The ash breaks out of the surface of
the white dwarf, flows laterally around the star, and converges on the
collision region at the antipodal point from where it broke out. The amount of
energy released during the deflagration phase is enough to cause the star to
rapidly expand, so that when the ash reaches the antipodal point, the surface
density is too low to initiate a detonation. Instead, as the ash flows into the
collision region (while mixing with surface fuel), the star reaches its
maximally expanded state and then contracts. The stellar contraction acts to
increase the density of the star, including the density in the collision
region. This both raises the temperature and density of the fuel-ash mixture in
the collision region and ultimately leads to thermodynamic conditions that are
necessary for the Zel'dovich gradient mechanism to produce a detonation. We
demonstrate feasibility of this scenario with three 3-dimensional (3D), full
star simulations of this model using the FLASH code. We characterized the
simulations by the energy released during the deflagration phase, which ranged
from 38% to 78% of the white dwarf's binding energy. We show that the necessary
conditions for detonation are achieved in all three of the models.Comment: 22 pages, 8 figures; Ap
Understanding the attitudes of the elderly towards enrolment into cancer clinical trials
BACKGROUND: The optimal cancer treatment for an older population is largely unknown because of the low numbers of elderly patients accrued into clinical trials. This project focuses on the attitudes of the elderly about participation in clinical trials to determine if this is one of the barriers to the involvement of this population in clinical trials. METHODS: The first phase of this study was a self-administered questionnaire mailed to 425 elderly persons with cancer, selected from Princess Margaret Hospital oncology clinics. The second phase consisted of individual semi-structured interviews with cancer patients to assess their attitudes towards cancer, its management and enrolment into cancer clinical trials. RESULTS: Ninety-four patients responded to the survey giving a response rate of 22.1%. Three quarters of respondents stated that they would be willing to participate in a clinical trial. The factors that most influenced older patients' willingness to participate in a cancer study were recommendations from a cancer doctor and the chance that the study treatment may help them feel better. Seventeen survey responders participated in interviews. Common themes from these interviews included patient-physician communication, the referral process, and the role of age in cancer care decision-making. CONCLUSION: Most elderly people, who responded to this survey, are willing to consider participation in cancer clinical trials however, elderly patients do not appear to actively seek clinical trials and few were informed of the availability of clinical trials. Physician barriers and availability of appropriate clinical trials may play a bigger role in preventing accrual of elderly cancer patients into trials
- …