114 research outputs found
Higgs production in association with bottom quarks
We study the production of a Higgs boson in association with bottom quarks in
hadronic collisions, and present phenomenological predictions relevant to the
13 TeV LHC. Our results are accurate to the next-to-leading order in QCD, and
matched to parton showers through the MC@NLO method; thus, they are fully
differential and based on unweighted events, which we shower by using both
Herwig++ and Pythia8. We perform the computation in both the four-flavour and
the five-flavour schemes, whose results we compare extensively at the level of
exclusive observables. In the case of the Higgs transverse momentum, we also
consider the analytically-resummed cross section up to the NNLO+NNLL accuracy.
In addition, we analyse at the effects of the
interference between the and gluon-fusion production modes.Comment: 33 pages, 17 figure
The annual rate of independent events - A key interpretation for traditional extreme value distributions of wind velocity
The extreme value theory has been object of engineering studies for more than a century. The analysis of extreme winds plays a key role for complex civil structures and a driving role in different stages of wind turbines lifetime. Most of extremes probability models depend on the annual rate of independent events (ARIE) which has been traditionally considered a constant value. The authors have embraced a recent belief considering the ARIE as a function of the wind velocity. Even though a certain agreement has been achieved across the researches, some issues are still pending. In this regard, the paper shows that the annual, seasonal and daily fluctuations embedded in time series of the mean wind speeds, constrain its probability distribution and time correlation to be physically consistent. Besides, a new physical interpretation of the ARIE is presented, expressing how the independence across wind observations increases with the wind speed, up to the point that all yearly observations are independent if larger than a suitable speed value. Such a tendency is not revealed if the annual, seasonal and daily fluctuations are excluded by the analysis, leading to a deceitful shape of the ARIE. Finally, the paper shows how the velocity-dependent ARIE model is consistent with the conventional asymptotic extreme value theory, if a sufficiently large left-censorship applies to the dataset. The study of the ARIE presented in this paper is based on long-term Monte Carlo simulation of the mean wind speed
Higgs pair production at the LHC with NLO and parton-shower effects
We present predictions for the SM-Higgs-pair production channels of relevance
at the LHC: gluon-gluon fusion, VBF, and top-pair, W, Z and single-top
associated production. All these results are at the NLO accuracy in QCD, and
matched to parton showers by means of the MC@NLO method; hence, they are fully
differential. With the exception of the gluon-gluon fusion process, for which a
special treatment is needed in order to improve upon the infinite-top-mass
limit, our predictions are obtained in a fully automatic way within the
publicly available MadGraph5_aMC@NLO framework. We show that for all channels
in general, and for gluon-gluon fusion and top-pair associated production in
particular, NLO corrections reduce the theoretical uncertainties, and are
needed in order to arrive at reliable predictions for total rates as well as
for distributions.Comment: 11 pages, 7 figures, version accepted for publication on PL
On the reduction of negative weights in MC@NLO-type matching procedures
We show how a careful analysis of the behaviour of a parton shower Monte
Carlo in the vicinity of the soft and collinear regions allows one to formulate
a modified MC@NLO-matching prescription that reduces the number of
negative-weight events with respect to that stemming from the standard MC@NLO
procedure. As a first practical application of such a prescription, that we dub
MC@NLO-, we have implemented it in the MadGraph5_aMC@NLO framework, by
employing the Pythia8 Monte Carlo. We present selected MC@NLO- results
at the 13 TeV LHC, and compare them with MC@NLO ones. We find that the former
predictions are consistent with the latter ones within the typical matching
systematics, and that the reduction of negative-weight events is significant.Comment: 44 pages, 13 figures; several minor text amendments and one figure
adde
Strongly-ordered infrared limits for subtraction counterterms from factorisation
After a brief introduction to the problem of subtraction of infrared divergences for high-order collider observables, we present a preliminary study of strongly-ordered soft and collinear multiple radiation from the point of view of factorisation. We show that the matrix elements of fields and Wilson lines that describe soft and collinear radiation in factorised scattering amplitudes can be re-factorised in strongly-ordered limits, providing a systematic method to compute them, to characterise their singularity structure, and to build local subtraction counterterms for strongly-ordered configurations. Our results provide tools for a detailed organisation of subtraction algorithms, in principle to all orders in perturbation theory
Strongly-ordered infrared limits for subtraction counterterms from factorisation
After a brief introduction to the problem of subtraction of infrared divergences for high-order collider observables, we present a preliminary study of strongly-ordered soft and collinear multiple radiation from the point of view of factorisation. We show that the matrix elements of fields and Wilson lines that describe soft and collinear radiation in factorised scattering amplitudes can be re-factorised in strongly-ordered limits, providing a systematic method to compute them, to characterise their singularity structure, and to build local subtraction counterterms for strongly-ordered configurations. Our results provide tools for a detailed organisation of subtraction algorithms, in principle to all orders in perturbation theory
Loop Equation in Two-dimensional Noncommutative Yang-Mills Theory
The classical analysis of Kazakov and Kostov of the Makeenko-Migdal loop
equation in two-dimensional gauge theory leads to usual partial differential
equations with respect to the areas of windows formed by the loop. We extend
this treatment to the case of U(N) Yang-Mills defined on the noncommutative
plane. We deal with all the subtleties which arise in their two-dimensional
geometric procedure, using where needed results from the perturbative
computations of the noncommutative Wilson loop available in the literature. The
open Wilson line contribution present in the non-commutative version of the
loop equation drops out in the resulting usual differential equations. These
equations for all N have the same form as in the commutative case for N to
infinity. However, the additional supplementary input from factorization
properties allowing to solve the equations in the commutative case is no longer
valid.Comment: 20 pages, 3 figures, references added, small clarifications adde
The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations
We discuss the theoretical bases that underpin the automation of the
computations of tree-level and next-to-leading order cross sections, of their
matching to parton shower simulations, and of the merging of matched samples
that differ by light-parton multiplicities. We present a computer program,
MadGraph5_aMC@NLO, capable of handling all these computations -- parton-level
fixed order, shower-matched, merged -- in a unified framework whose defining
features are flexibility, high level of parallelisation, and human intervention
limited to input physics quantities. We demonstrate the potential of the
program by presenting selected phenomenological applications relevant to the
LHC and to a 1-TeV collider. While next-to-leading order results are
restricted to QCD corrections to SM processes in the first public version, we
show that from the user viewpoint no changes have to be expected in the case of
corrections due to any given renormalisable Lagrangian, and that the
implementation of these are well under way.Comment: 158 pages, 27 figures; a few references have been adde
Erratum to: Local analytic sector subtraction at NNLO
Eq. (3.55) should be replace
- …