2,379 research outputs found

    Properties of ABA+ for Non-Monotonic Reasoning

    Full text link
    We investigate properties of ABA+, a formalism that extends the well studied structured argumentation formalism Assumption-Based Argumentation (ABA) with a preference handling mechanism. In particular, we establish desirable properties that ABA+ semantics exhibit. These pave way to the satisfaction by ABA+ of some (arguably) desirable principles of preference handling in argumentation and nonmonotonic reasoning, as well as non-monotonic inference properties of ABA+ under various semantics.Comment: This is a revised version of the paper presented at the worksho

    Planning with Incomplete Information

    Full text link
    Planning is a natural domain of application for frameworks of reasoning about actions and change. In this paper we study how one such framework, the Language E, can form the basis for planning under (possibly) incomplete information. We define two types of plans: weak and safe plans, and propose a planner, called the E-Planner, which is often able to extend an initial weak plan into a safe plan even though the (explicit) information available is incomplete, e.g. for cases where the initial state is not completely known. The E-Planner is based upon a reformulation of the Language E in argumentation terms and a natural proof theory resulting from the reformulation. It uses an extension of this proof theory by means of abduction for the generation of plans and adopts argumentation-based techniques for extending weak plans into safe plans. We provide representative examples illustrating the behaviour of the E-Planner, in particular for cases where the status of fluents is incompletely known.Comment: Proceedings of the 8th International Workshop on Non-Monotonic Reasoning, April 9-11, 2000, Breckenridge, Colorad

    Spherical clustering of users navigating 360{\deg} content

    Full text link
    In Virtual Reality (VR) applications, understanding how users explore the omnidirectional content is important to optimize content creation, to develop user-centric services, or even to detect disorders in medical applications. Clustering users based on their common navigation patterns is a first direction to understand users behaviour. However, classical clustering techniques fail in identifying these common paths, since they are usually focused on minimizing a simple distance metric. In this paper, we argue that minimizing the distance metric does not necessarily guarantee to identify users that experience similar navigation path in the VR domain. Therefore, we propose a graph-based method to identify clusters of users who are attending the same portion of the spherical content over time. The proposed solution takes into account the spherical geometry of the content and aims at clustering users based on the actual overlap of displayed content among users. Our method is tested on real VR user navigation patterns. Results show that our solution leads to clusters in which at least 85% of the content displayed by one user is shared among the other users belonging to the same cluster.Comment: 5 pages, conference (Published in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

    Towards a Framework for Evaluating Explanations in Automated Fact Verification

    Full text link
    As deep neural models in NLP become more complex, and as a consequence opaque, the necessity to interpret them becomes greater. A burgeoning interest has emerged in rationalizing explanations to provide short and coherent justifications for predictions. In this position paper, we advocate for a formal framework for key concepts and properties about rationalizing explanations to support their evaluation systematically. We also outline one such formal framework, tailored to rationalizing explanations of increasingly complex structures, from free-form explanations to deductive explanations, to argumentative explanations (with the richest structure). Focusing on the automated fact verification task, we provide illustrations of the use and usefulness of our formalization for evaluating explanations, tailored to their varying structures.Comment: Accepted at LREC-COLING 2024; Updated Author Affiliatio

    Shapley-PC: Constraint-based Causal Structure Learning with Shapley Values

    Full text link
    Causal Structure Learning (CSL), amounting to extracting causal relations among the variables in a dataset, is widely perceived as an important step towards robust and transparent models. Constraint-based CSL leverages conditional independence tests to perform causal discovery. We propose Shapley-PC, a novel method to improve constraint-based CSL algorithms by using Shapley values over the possible conditioning sets to decide which variables are responsible for the observed conditional (in)dependences. We prove soundness and asymptotic consistency and demonstrate that it can outperform state-of-the-art constraint-based, search-based and functional causal model-based methods, according to standard metrics in CSL.Comment: 18 pages (with appendix

    Justifying Answer Sets using Argumentation

    Get PDF
    An answer set is a plain set of literals which has no further structure that would explain why certain literals are part of it and why others are not. We show how argumentation theory can help to explain why a literal is or is not contained in a given answer set by defining two justification methods, both of which make use of the correspondence between answer sets of a logic program and stable extensions of the Assumption-Based Argumentation (ABA) framework constructed from the same logic program. Attack Trees justify a literal in argumentation-theoretic terms, i.e. using arguments and attacks between them, whereas ABA-Based Answer Set Justifications express the same justification structure in logic programming terms, that is using literals and their relationships. Interestingly, an ABA-Based Answer Set Justification corresponds to an admissible fragment of the answer set in question, and an Attack Tree corresponds to an admissible fragment of the stable extension corresponding to this answer set.Comment: This article has been accepted for publication in Theory and Practice of Logic Programmin
    • …
    corecore