37 research outputs found
MULTIPLE AGENTS, AND AGRICULTURAL NONPOINT-SOURCE WATER POLLUTION CONTROL POLICIES
Assuming asymmetric information over farmer profits and zero transaction costs, prior literature has suggested that when regulating nonpoint source water pollution, a tax on management practices (inputs) can implement full-information allocations and is superior to a tax on estimated runoff. Using mechanism design theory under asymmetric information, this paper show that under the same assumptions, management practice taxes and taxes on estimated runoff are equally efficient.Environmental Economics and Policy,
TRANSACTION COSTS AND AGRICULTURAL NONPOINT-SOURCE WATER POLLUTION CONTROL POLICIES
Mechanism design theory is used to develop the properties of optimal pollution control incentive schemes in the presence of adverse selection, moral hazard, and transaction costs. The model presented here shows (a) with no deadweight costs (transaction costs) , first-best allocations are always possible; (b) in the presence of transaction costs (caused by raising taxes), only second-best allocations are feasible; and (c) the conditions under which the optimal incentive scheme implementing second-best allocations will be a nonlinear tax, a standard(s), or a combination of both taxes and standard(s).Environmental Economics and Policy,
FAMILIAR AND FAVORITE SITES IN A RANDOM UTILITY MODEL OF BEACH RECREATION
We estimate a random utility model of recreation demand accounting for choice set familiarity and favorite sites. Our approach differs from existing approaches by retaining all sites in estimating the parameters of site utility. Familiar and unfamiliar sites are specified with different utility functions. Favored sites are assumed to have higher utility than nonfavored sites in estimation.Resource /Energy Economics and Policy,
Recommended from our members
The Michigan Recreational Angling Demand Model
The paper reports on a large-scale demand model for recreational fishing in Michigan. The model is based on the travel cost method and is specified as a four-level nested-logit. Seasonal participation is modeled by repeating the site choice logit over the course of a season. Data on anglers' trips and site choices were collected using a year-long telephone panel survey of over 1,900 Michigan residents. The model distinguishes among a broad range of fishing trip types including trips of different lengths; trips for different species; and trips to Great Lake, inland lake, and inland stream sites. For Great Lakes fishing, anglers' site choices are related to catch rates which vary spatially and temporally (i.e., time-varying site quality characteristics).Keywords: Recreation Demand, Nonmarket Values, Nested Logit, Random Utility Model, Repeated Logi
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
CMB-S4---the next-generation ground-based cosmic microwave background (CMB)
experiment---is set to significantly advance the sensitivity of CMB
measurements and enhance our understanding of the origin and evolution of the
Universe, from the highest energies at the dawn of time through the growth of
structure to the present day. Among the science cases pursued with CMB-S4, the
quest for detecting primordial gravitational waves is a central driver of the
experimental design. This work details the development of a forecasting
framework that includes a power-spectrum-based semi-analytic projection tool,
targeted explicitly towards optimizing constraints on the tensor-to-scalar
ratio, , in the presence of Galactic foregrounds and gravitational lensing
of the CMB. This framework is unique in its direct use of information from the
achieved performance of current Stage 2--3 CMB experiments to robustly forecast
the science reach of upcoming CMB-polarization endeavors. The methodology
allows for rapid iteration over experimental configurations and offers a
flexible way to optimize the design of future experiments given a desired
scientific goal. To form a closed-loop process, we couple this semi-analytic
tool with map-based validation studies, which allow for the injection of
additional complexity and verification of our forecasts with several
independent analysis methods. We document multiple rounds of forecasts for
CMB-S4 using this process and the resulting establishment of the current
reference design of the primordial gravitational-wave component of the Stage-4
experiment, optimized to achieve our science goals of detecting primordial
gravitational waves for at greater than , or, in the
absence of a detection, of reaching an upper limit of at CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note:
text overlap with arXiv:1907.0447
Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking
The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of âliving dataâ through continuous reanalysis of deposited data
CMB-S4
We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
Abstract: CMB-S4âthe next-generation ground-based cosmic microwave background (CMB) experimentâis set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2â3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5Ï, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL
MULTIPLE AGENTS, AND AGRICULTURAL NONPOINT-SOURCE WATER POLLUTION CONTROL POLICIES
Assuming asymmetric information over farmer profits and zero transaction costs, prior literature has suggested that when regulating nonpoint source water pollution, a tax on management practices (inputs) can implement full-information allocations and is superior to a tax on estimated runoff. Using mechanism design theory under asymmetric information, this paper show that under the same assumptions, management practice taxes and taxes on estimated runoff are equally efficient