82 research outputs found

    Evaluating the uncertainty and reliability of standardized indices

    Get PDF
    Standardized indices are widely used in the spatio-temporal monitoring of several hydrological variables. The estimation of these indices is affected by uncertainty which depends on the methods adopted for their quantification and on the characteristics (i.e., size and variability) of the available sample of observations. In this paper various uncertainty measures, applicable to any kind of standardized index, are proposed. These measures derive from bootstrap-based confidence intervals expressed in years of return period and are effective for assessing both the uncertainty and the reliability of the index estimate. In the illustrative case study the indices considered are the Standardized Precipitation Index and the Standardized Precipitation Evapotranspiration Index. Their time series have been quantified by both nonparametric and parametric approaches, using the weather data of a single station in central Italy. For the parametric approach, two possible types of distributions have been assumed for each index. The results are discussed in order to analyze the behavior of the proposed uncertainty measures in relation to: sample size, type of approach (parametric or nonparametric), time scale, type of standardized index, and type of anomaly (excess or deficit)

    Interaction and coherence of a plasmon-exciton polariton condensate

    Get PDF
    Polaritons are quasiparticles arising from the strong coupling of electromagnetic waves in cavities and dipolar oscillations in a material medium. In this framework, localized surface plasmon in metallic nanoparticles defining optical nanocavities have attracted increasing interests in the last decade. This interest results from their sub-diffraction mode volume, which offers access to extremely high photonic densities by exploiting strong scattering cross-sections. However, high absorption losses in metals have hindered the observation of collective coherent phenomena, such as condensation. In this work we demonstrate the formation of a non-equilibrium room temperature plasmon-exciton-polariton condensate with a long range spatial coherence, extending a hundred of microns, well over the excitation area, by coupling Frenkel excitons in organic molecules to a multipolar mode in a lattice of plasmonic nanoparticles. Time-resolved experiments evidence the picosecond dynamics of the condensate and a sizeable blueshift, thus measuring for the first time the effect of polariton interactions in plasmonic cavities. Our results pave the way to the observation of room temperature superfluidity and novel nonlinear phenomena in plasmonic systems, challenging the common belief that absorption losses in metals prevent the realization of macroscopic quantum states.Comment: 23 pages, 5 figures, SI 7 pages, 5 figure

    Magnetic and Electric Mie-Exciton Polaritons in Silicon Nanodisks

    Full text link
    Light-matter interactions at the nanoscale constitute a fundamental ingredient for engineering applications in nanophotonics and quantum optics. To this regard electromagnetic Mie resonances excited in high-refractive index dielectric nanoparticles have recently attracted interest because of their lower losses and better control over the scattering patterns compared to their plasmonic metallic counterparts. The emergence of several resonances in those systems results in an overall high complexity, where the electric and magnetic dipoles have significant overlap in the case of spherical symmetry, thus concealing the contributions of each resonance separately. Here we show, experimentally and theoretically, the emergence of strong light-matter coupling between the magnetic and electric-dipole resonances of individual silicon nanodisks coupled to a J-aggregated organic semiconductor resonating at optical frequencies, evidencing how the different properties of the two resonances results in two different coupling strengths. The energy splittings observed are of the same order of magnitude as in similar plasmonic systems, thus confirming dielectric nanoparticles as promising alternatives for localized strong coupling studies. The coupling of both the electric and magnetic dipole resonances can offer interesting possibilities for the control of directional light scattering in the strong-coupling regime and the dynamic tuning of nanoscale light-matter coupled states by external fields

    Gain-compensated cavities for the dynamic control of light-matter interactions

    Full text link
    We propose an efficient approach for actively controlling the Rabi oscillations in emitter-cavity hybrids based on the presence of an element with optical gain. Inspired by recent developments in parity-time (PT\mathcal{PT})-symmetry photonics, we show that nano- or micro-cavities where intrinsic losses are partially or fully compensated by an externally controllable amount of gain offer unique capabilities for manipulating the dynamics of emitters. In particular, one can drastically modify the dynamics of the system, increase the overall occupation numbers, enhance the longevity of the Rabi oscillations, and even decelerate them to the point where their experimental observation becomes less challenging. Furthermore, we show that there is a specific gain value that leads to an exceptional point, where both emitter and cavity occupation oscillate practically in phase, with occupation numbers that can significantly exceed unity. By revisiting a recently-introduced Rabi-visibility measure, we provide robust guidelines for quantifying the coupling strength and achieving strong-coupling with adaptable Rabi frequency via loss compensation

    CORRIGENDUM to The mechanisms of acute interstitial nephritis in the era of immune checkpoint inhibitors in melanoma

    Get PDF
    In this article, the authors’ first names and surnames were incorrectly listed in the wrong order. The correct author list is: Marco Tucci, Anna Passarelli, Annalisa Todisco, Francesco Mannavola, Luigia Stefania Stucci, Stella D’Oronzo, Michele Rossini, Marco Taurisano, Loreto Gesualdo and Franco Silvestris
    • …