141 research outputs found

    Recent evidence that TADs and chromatin loops are dynamic structures.

    Get PDF
    Mammalian genomes are folded into spatial domains, which regulate gene expression by modulating enhancer-promoter contacts. Here, we review recent studies on the structure and function of Topologically Associating Domains (TADs) and chromatin loops. We discuss how loop extrusion models can explain TAD formation and evidence that TADs are formed by the ring-shaped protein complex, cohesin, and that TAD boundaries are established by the DNA-binding protein, CTCF. We discuss our recent genomic, biochemical and single-molecule imaging studies on CTCF and cohesin, which suggest that TADs and chromatin loops are dynamic structures. We highlight complementary polymer simulation studies and Hi-C studies employing acute depletion of CTCF and cohesin, which also support such a dynamic model. We discuss the limitations of each approach and conclude that in aggregate the available evidence argues against stable loops and supports a model where TADs are dynamic structures that continually form and break throughout the cell cycle

    A dynamic mode of mitotic bookmarking by transcription factors.

    Get PDF
    During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking

    Multiple regions of TBP participate in the response to transcriptional activators in vivo

    Get PDF
    We used mutant yeast and human TBP molecules with an altered DNA-binding specificity to examine the role of TBP in transcriptional activation in vivo. We show that yeast TBP is functionally equivalent to human TBP for response to numerous transcriptional activators in human cells, including those that do not function in yeast. Despite the extensive conservation of TBP, its ability to respond to transcriptional activators in vivo is curiously resistant to clustered sets of alanine substitution mutations in different regions of the protein, including those that disrupt DNA binding and basal transcription in vitro. Combined sets of these mutations, however, can attenuate the in vivo activity of TBP and can differentially affect response to different activation domains. Although the activity of TBP mutants in vivo did not correlate with DNA binding or basal transcription in vitro, it did correlate with binding in vitro to the largest subunit of TFIID, hTAFII250. Together, these data suggest that TBP utilizes multiple interactions across its surface to respond to RNA polymerase II transcriptional activators in vivo; some of these interactions appear to involve recruitment of TBP into TFIID, whereas others are involved in response to specific types of transcriptional activators

    TAFs and TFIIA mediate differential utilization of the tandem Adh promoters

    Get PDF
    AbstractThe D. melanogaster alcohol dehydrogenase (Adh) gene is transcribed from two tandem promoters that are differentially utilized at various stages during development. To determine the mechanism of promoter selectivity, we have analyzed the activity of the Adh promoters both in vitro and in transfected cells. We found that selective promoter utilization is controlled by distinct initiator elements. Reconstitution of Adh transcription with purified components requires a specific TBP-TAF complex that, in concert with TFIIA, directs differential Adh promoter transcription. Fractionation of this TBP-TAF complex reveals that TAF II 150 is required for discrimination between the proximal and distal promoters. We propose a mechanism for regulating differential promoter utilization during Drosophila development that involves the recognition of specific initiator elements by TAFs in the TFIID complex

    TAFII250 Is a Bipartite Protein Kinase That Phosphorylates the Basal Transcription Factor RAP74

    Get PDF
    AbstractSome TAF subunits of transcription factor TFIID play a pivotal role in transcriptional activation by mediating proteinā€“protein interactions, whereas other TAFs direct promoter selectivity via proteinā€“DNA recognition. Here, we report that purified recombinant TAFII250 is a protein serine kinase that selectively phosphorylates RAP74 but not other basal transcription factors or common phosphoacceptor proteins. The phosphorylation of RAP74 also occurs in the context of the complete TFIID complex. Deletion analysis revealed that TAFII250 contains two distinct kinase domains each capable of autophosphorylation. However, both the N- and C-terminal kinase domains of TAFII250 are required for efficient transphosphorylation of RAP74 on serine residues. These findings suggest that the targeted phosphorylation of RAP74 by TAFII250 may provide a mechanism for signaling between components within the initiation complex to regulate transcription

    A DNA Repair Complex Functions as an Oct4/Sox2 Coactivator in Embryonic Stem Cells

    Get PDF
    SummaryThe transcriptional activators Oct4, Sox2, and Nanog cooperate with a wide array of cofactors to orchestrate an embryonic stem (ES) cell-specific gene expression program that forms the molecular basis of pluripotency. Here, we report using an unbiased inĀ vitro transcription-biochemical complementation assay to discover a multisubunit stem cell coactivator complex (SCC) that is selectively required for the synergistic activation of the Nanog gene by Oct4 and Sox2. Purification, identification, and reconstitution of SCC revealed this coactivator to be the trimeric XPC-nucleotide excision repair complex. SCC interacts directly with Oct4 and Sox2 and is recruited to the Nanog and Oct4 promoters as well as a majority of genomic regions that are occupied by Oct4 and Sox2. Depletion of SCC/XPC compromised both pluripotency in ES cells and somatic cell reprogramming of fibroblasts to induced pluripotent stem (iPS) cells. This study identifies a transcriptional coactivator with diversified functions in maintaining ES cell pluripotency and safeguarding genome integrity.PaperCli
    • ā€¦