8 research outputs found

    From Concept to Synthesis: Developing Heat-Resistant High Explosives through Automated High-Throughput Virtual Screening

    No full text
    In this paper, we investigate the utilization of high-throughput virtual screening (HTVS) to identify and develop novel heat-resistant high explosives (HRHEs) that possess a decomposition temperature exceeding 300 °C and a detonation velocity surpassing 8000 m·s–1. To achieve this, we constructed a molecular library composed of pyrimidine as the parent ring and various five-membered heterocycles as guest rings connected by an amino bridge. The GFN-xTB method, an extended tight binding method, is employed to facilitate geometry optimization and vibrational analysis, thereby enabling the application of more precise and versatile quantum chemical calculation in the HTVS workflow. Our screening efforts resulted in the synthesis of three compounds that exhibited remarkable stability with decomposition temperatures exceeding 320 °C, suggesting their potential as HRHEs. Notably, compound K19-21 demonstrated a decomposition temperature of 324.6 °C and a detonation velocity of 8293 m·s–1, surpassing both 2,2′,4,4′,6,6′-hexanitrostilbene (HNS) and 2,6-bis(picrylamino)-3,5-dinitropyridine (PYX) and rivaling l,3,5-triamino-2,4,6-trinitrobenzene (TATB). These results support the efficacy of our molecular library design concepts and screening workflow. Overall, our study underscores the importance and potential of HTVS in accelerating the discovery of new materials possessing the desired properties, especially in the field of energetic materials

    From Concept to Synthesis: Developing Heat-Resistant High Explosives through Automated High-Throughput Virtual Screening

    No full text
    In this paper, we investigate the utilization of high-throughput virtual screening (HTVS) to identify and develop novel heat-resistant high explosives (HRHEs) that possess a decomposition temperature exceeding 300 °C and a detonation velocity surpassing 8000 m·s–1. To achieve this, we constructed a molecular library composed of pyrimidine as the parent ring and various five-membered heterocycles as guest rings connected by an amino bridge. The GFN-xTB method, an extended tight binding method, is employed to facilitate geometry optimization and vibrational analysis, thereby enabling the application of more precise and versatile quantum chemical calculation in the HTVS workflow. Our screening efforts resulted in the synthesis of three compounds that exhibited remarkable stability with decomposition temperatures exceeding 320 °C, suggesting their potential as HRHEs. Notably, compound K19-21 demonstrated a decomposition temperature of 324.6 °C and a detonation velocity of 8293 m·s–1, surpassing both 2,2′,4,4′,6,6′-hexanitrostilbene (HNS) and 2,6-bis(picrylamino)-3,5-dinitropyridine (PYX) and rivaling l,3,5-triamino-2,4,6-trinitrobenzene (TATB). These results support the efficacy of our molecular library design concepts and screening workflow. Overall, our study underscores the importance and potential of HTVS in accelerating the discovery of new materials possessing the desired properties, especially in the field of energetic materials

    Additional file 1 of A radiomics-based deep learning approach to predict progression free-survival after tyrosine kinase inhibitor therapy in non-small cell lung cancer

    No full text
    Additional file 1: Table S1. The formulae for the calculation of primary radiomic features. Table S2. Grid search results of DeepSurv hyper-parameters. Table S3. Comparisons of clinical characteristics between training and test sets. Table S4. Characteristics of clinical laboratory test. Table S5. Identified features for the model training in each DeepSurv model. Figure S1. The architecture of applied DeepSurv model. Figure S2. Schematic diagram of predictive risk-of-progression period in DeepSurv model

    Dynamics of Electrically Driven Cholesteric Liquid Crystals by Triboelectrification and Their Application in Self-Powered Information Securing and Vision Correcting

    No full text
    Smart glass technology is rapidly evolving and finding significant application in light selectivity devices. However, a major disadvantage of such devices is their high energy requirement which hinders the commercialization progress. In this work, a self-powered optical switch is developed based on the electrochromic effect induced by a vertical contact-separation triboelectric nanogenerator (VCS-TENG) in a cholesteric liquid crystal (CLC) display. The voltage produced by the VCS-TENG causes the CLC display to transition across different physical states, viz., planar, focal conic, and homeotropic, which correspond to varying opacities and applications. Light penetration testing showed that the proposed CLC achieved a shading rate as high as 80%. Moreover, our device demonstrated high durability of up to 500 cycles. Most of all, the novel device successfully implemented reliable performance in important applications that have been demonstrated in this work, including webcam and cellphone security, and occlusion therapy devices in ophthalmology

    Dynamics of Electrically Driven Cholesteric Liquid Crystals by Triboelectrification and Their Application in Self-Powered Information Securing and Vision Correcting

    No full text
    Smart glass technology is rapidly evolving and finding significant application in light selectivity devices. However, a major disadvantage of such devices is their high energy requirement which hinders the commercialization progress. In this work, a self-powered optical switch is developed based on the electrochromic effect induced by a vertical contact-separation triboelectric nanogenerator (VCS-TENG) in a cholesteric liquid crystal (CLC) display. The voltage produced by the VCS-TENG causes the CLC display to transition across different physical states, viz., planar, focal conic, and homeotropic, which correspond to varying opacities and applications. Light penetration testing showed that the proposed CLC achieved a shading rate as high as 80%. Moreover, our device demonstrated high durability of up to 500 cycles. Most of all, the novel device successfully implemented reliable performance in important applications that have been demonstrated in this work, including webcam and cellphone security, and occlusion therapy devices in ophthalmology

    Dynamics of Electrically Driven Cholesteric Liquid Crystals by Triboelectrification and Their Application in Self-Powered Information Securing and Vision Correcting

    No full text
    Smart glass technology is rapidly evolving and finding significant application in light selectivity devices. However, a major disadvantage of such devices is their high energy requirement which hinders the commercialization progress. In this work, a self-powered optical switch is developed based on the electrochromic effect induced by a vertical contact-separation triboelectric nanogenerator (VCS-TENG) in a cholesteric liquid crystal (CLC) display. The voltage produced by the VCS-TENG causes the CLC display to transition across different physical states, viz., planar, focal conic, and homeotropic, which correspond to varying opacities and applications. Light penetration testing showed that the proposed CLC achieved a shading rate as high as 80%. Moreover, our device demonstrated high durability of up to 500 cycles. Most of all, the novel device successfully implemented reliable performance in important applications that have been demonstrated in this work, including webcam and cellphone security, and occlusion therapy devices in ophthalmology

    Dynamics of Electrically Driven Cholesteric Liquid Crystals by Triboelectrification and Their Application in Self-Powered Information Securing and Vision Correcting

    No full text
    Smart glass technology is rapidly evolving and finding significant application in light selectivity devices. However, a major disadvantage of such devices is their high energy requirement which hinders the commercialization progress. In this work, a self-powered optical switch is developed based on the electrochromic effect induced by a vertical contact-separation triboelectric nanogenerator (VCS-TENG) in a cholesteric liquid crystal (CLC) display. The voltage produced by the VCS-TENG causes the CLC display to transition across different physical states, viz., planar, focal conic, and homeotropic, which correspond to varying opacities and applications. Light penetration testing showed that the proposed CLC achieved a shading rate as high as 80%. Moreover, our device demonstrated high durability of up to 500 cycles. Most of all, the novel device successfully implemented reliable performance in important applications that have been demonstrated in this work, including webcam and cellphone security, and occlusion therapy devices in ophthalmology

    Dynamics of Electrically Driven Cholesteric Liquid Crystals by Triboelectrification and Their Application in Self-Powered Information Securing and Vision Correcting

    No full text
    Smart glass technology is rapidly evolving and finding significant application in light selectivity devices. However, a major disadvantage of such devices is their high energy requirement which hinders the commercialization progress. In this work, a self-powered optical switch is developed based on the electrochromic effect induced by a vertical contact-separation triboelectric nanogenerator (VCS-TENG) in a cholesteric liquid crystal (CLC) display. The voltage produced by the VCS-TENG causes the CLC display to transition across different physical states, viz., planar, focal conic, and homeotropic, which correspond to varying opacities and applications. Light penetration testing showed that the proposed CLC achieved a shading rate as high as 80%. Moreover, our device demonstrated high durability of up to 500 cycles. Most of all, the novel device successfully implemented reliable performance in important applications that have been demonstrated in this work, including webcam and cellphone security, and occlusion therapy devices in ophthalmology
    corecore