11,284 research outputs found

    Measuring the similarity of PML documents with RFID-based sensors

    Get PDF
    The Electronic Product Code (EPC) Network is an important part of the Internet of Things. The Physical Mark-Up Language (PML) is to represent and de-scribe data related to objects in EPC Network. The PML documents of each component to exchange data in EPC Network system are XML documents based on PML Core schema. For managing theses huge amount of PML documents of tags captured by Radio frequency identification (RFID) readers, it is inevitable to develop the high-performance technol-ogy, such as filtering and integrating these tag data. So in this paper, we propose an approach for meas-uring the similarity of PML documents based on Bayesian Network of several sensors. With respect to the features of PML, while measuring the similarity, we firstly reduce the redundancy data except information of EPC. On the basis of this, the Bayesian Network model derived from the structure of the PML documents being compared is constructed.Comment: International Journal of Ad Hoc and Ubiquitous Computin

    Novel Applications of Tetrazoles Derived from the TMSN3-Ugi Reaction

    Get PDF


    Get PDF
    Principal Component Analysis (PCA) is a popular method for dimension reduction that can be used in many fields including data compression, image processing, exploratory data analysis, etc. However, traditional PCA method has several drawbacks, since the traditional PCA method is not efficient for dealing with high dimensional data and cannot be effectively applied to compute accurate enough principal components when handling relatively large portion of missing data. In this report, we propose to use EM-PCA method for dimension reduction of power system measurement with missing data, and provide a comparative study of traditional PCA and EM-PCA methods. Our extensive experimental results show that EM-PCA method is more effective and more accurate for dimension reduction of power system measurement data than traditional PCA method when dealing with large portion of missing data set