63 research outputs found
Recommended from our members
Mathematics as a tool in the Life Sciences
Teaching mathematics to students in the biological sciences is often fraught with difficulty. Students often discover mathematics to be a very 'dry' subject in which it is difficult to see the motivation of learning it given its often abstract application. In this paper I advocate the use of mathematical modelling as a method for engaging students in understanding the use of mathematics in helping to solve problems in the Biological Sciences. The concept of mathematics as a laboratory tool is introduced and the importance of presenting students with relevant, real-world examples of applying mathematics in the Biological Sciences is discussed
An integrated mathematical model of cellular cholesterol biosynthesis and lipoprotein metabolism
Cholesterol regulation is an important aspect of human health. In this work we bring together and extend two recent mathematical models describing cholesterol biosynthesis and lipoprotein endocytosis to create an integrated model of lipoprotein metabolism in the context of a single hepatocyte. The integrated model includes a description of low density lipoprotein (LDL) receptor and cholesterol synthesis, delipidation of very low density lipoproteins (VLDLs) to LDLs and subsequent lipoprotein endocytosis. Model analysis shows that cholesterol biosynthesis produces the majority of intracellular cholesterol. The availability of free receptors does not greatly effect the concentration of intracellular cholesterol, but has a detrimental effect on extracellular VLDL and LDL levels. We test our model by considering its ability to reproduce the known biology of Familial Hypercholesterolaemia and statin therapy. In each case the model reproduces the known biological behaviour. Quantitative differences in response to statin therapy are discussed in the context of the need to extend the work to a more {\it in vivo} setting via the incorporation of more dietary lipoprotein related processes and the need for further testing and parameterisation of {\it in silico} models of lipoprotein metabolism
Recommended from our members
Classifying general nonlinear force laws in cell-based models via the continuum limit
though discrete cell-based frameworks are now commonly used to simulate a whole range of biological phenomena, it is typically not obvious how the numerous different types of model are related to one another, nor which one is most appropriate in a given context. Here we demonstrate how individual cell movement on the discrete scale modeled using nonlinear force laws can be described by nonlinear diffusion coefficients on the continuum scale. A general relationship between nonlinear force laws and their respective diffusion coefficients is derived in one spatial dimension and, subsequently, a range of particular examples is considered. For each case excellent agreement is observed between numerical solutions of the discrete and corresponding continuum models. Three case studies are considered in which we demonstrate how the derived nonlinear diffusion coefficients can be used to (a) relate different discrete models of cell behavior; (b) derive discrete, intercell force laws from previously posed diffusion coefficients, and (c) describe aggregative behavior in discrete simulations
Recommended from our members
Fold-change detection in a whole-pathway model of Escherichia coli chemotaxis
There has been recent interest in sensory systems that are able to display a response which is proportional to a fold change in stimulus concentration, a feature referred to as fold-change detection (FCD). Here, we demonstrate FCD in a recent whole-pathway mathematical model of Escherichia coli chemotaxis. FCD is shown to hold for each protein in the signalling cascade and to be robust to kinetic rate and protein concentration variation. Using a sensitivity analysis, we find that only variations in the number of receptors within a signalling team lead to the model not exhibiting FCD. We also discuss the ability of a cell with multiple receptor types to display FCD and explain how a particular receptor configuration may be used to elucidate the two experimentally determined regimes of FCD behaviour. All findings are discussed in respect of the experimental literature
Recommended from our members
Modeling chemotaxis reveals the role of reversed phosphotransfer and a bi-functional kinase-phosphatase
Understanding how multiple signals are integrated in living cells to produce a balanced response is a major challenge in
biology. Two-component signal transduction pathways, such as bacterial chemotaxis, comprise histidine protein kinases
(HPKs) and response regulators (RRs). These are used to sense and respond to changes in the environment. Rhodobacter
sphaeroides has a complex chemosensory network with two signaling clusters, each containing a HPK, CheA. Here we
demonstrate, using a mathematical model, how the outputs of the two signaling clusters may be integrated. We use our
mathematical model supported by experimental data to predict that: (1) the main RR controlling flagellar rotation, CheY6, aided by its specific phosphatase, the bifunctional kinase CheA3, acts as a phosphate sink for the other RRs; and (2) a phosphorelay pathway involving CheB2 connects the cytoplasmic cluster kinase CheA3 with the polar localised kinase CheA2, and allows CheA3-P to phosphorylate non-cognate chemotaxis RRs. These two mechanisms enable the bifunctional kinase/phosphatase activity of CheA3 to integrate and tune the sensory output of each signaling cluster to produce a balanced response. The signal integration mechanisms identified here may be widely used by other bacteria, since like R. sphaeroides, over 50% of chemotactic bacteria have multiple cheA homologues and need to integrate signals from different
sources
Recommended from our members
Model reduction in mathematical pharmacology: integration, reduction and linking of PBPK and systems biology models
In this paper we present a framework for the reduction and linking of physiologically based pharmacokinetic (PBPK) models with models of systems biology to describe the effects of drug administration across multiple scales. To address the issue of model complexity, we propose the reduction of each type of model separately prior to being linked. We highlight the use of balanced truncation in reducing the linear components of PBPK models, whilst proper lumping is shown to be efficient in reducing typically nonlinear systems biology type models. The overall methodology is demonstrated via two example systems; a model of bacterial chemotactic signalling in Escherichia coli and a model of extracellular regulatory kinase activation mediated via the extracellular growth factor and nerve growth factor receptor pathways. Each system is tested under the simulated administration of three hypothetical compounds; a strong base, a weak base, and an acid, mirroring the parameterisation of pindolol, midazolam, and thiopental, respectively. Our method can produce up to an 80% decrease in simulation time, allowing substantial speed-up for computationally intensive applications including parameter fitting or agent based modelling. The approach provides a straightforward means to construct simplified Quantitative Systems Pharmacology models that still provide significant insight into the mechanisms of drug action. Such a framework can potentially bridge pre-clinical and clinical modelling - providing an intermediate level of model granularity between classical, empirical approaches and mechanistic systems describing the molecular scale
Recommended from our members
Response kinetics in the complex chemotaxis signalling pathway of Rhodobacter sphaeroides
Chemotaxis is one of the best characterised signalling systems in biology. It is the mechanism by which bacteria move towards optimal environments and is implicated in biofilm formation, pathogenesis and symbiosis. The properties of the bacterial chemosensory response have been described in detail for the single chemosensory pathway of Escherichia coli. We have characterised the properties of the chemosensory response of Rhodobacter sphaeroides, an -proteobacterium with multiple chemotaxis pathways, under two growth conditions allowing the effects of protein expression levels and cell architecture to be investigated. Using tethered cell assays we measured the responses of the system to step changes in concentration of the attractant propionate and show that, independently of the growth conditions, R. sphaeroides is chemotactic over at least five orders of magnitude and has a sensing profile following Weberβs law. Mathematical modelling also shows that, like E. coli, R. sphaeroides is capable of showing Fold-Change Detection (FCD). Our results indicate that general features of bacterial chemotaxis such as the range and sensitivity of detection, adaptation times, adherence to Weberβs law and the presence of FCD may be integral features of chemotaxis systems in general, regardless of network complexity, protein expression levels and cellular architecture across different species
Recommended from our members
A mathematical model of the sterol regulatory element binding protein 2 cholesterol biosynthesis pathway
Cholesterol is one of the key constituents for maintaining the cellular membrane and thus the integrity of the cell itself. In contrast high levels of cholesterol in the blood are known to be a major risk factor in the development of cardiovascular disease. We formulate a deterministic nonlinear ordinary differential equation model of the sterol regulatory element binding protein 2 (SREBP-2) cholesterol genetic regulatory pathway in an hepatocyte. The mathematical model includes a description of genetic transcription by SREBP-2 which is subsequently translated to mRNA leading to the formation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a main precursor of cholesterol synthesis. Cholesterol synthesis subsequently leads to the regulation of SREBP-2 via a negative feedback formulation. Parameterised with data from the literature, the model is used to understand how SREBP-2 transcription and regulation affects cellular cholesterol concentration. Model stability analysis shows that the only positive steady-state of the system exhibits purely oscillatory, damped oscillatory or monotic behaviour under certain parameter conditions. In light of our findings we postulate how cholesterol homestasis is maintained within the cell and the advantages of our model formulation are discussed with respect to other models of genetic regulation within the literature
Recommended from our members
A high-density immunoblotting methodology for quantification of total protein levels and phosphorylation modifications
The components of many signaling pathways have been identified and there is now a need to conduct quantitative data-rich temporal experiments for systems biology and modeling approaches to better understand pathway dynamics and regulation. Here we present a modified Western blotting method that allows the rapid and reproducible quantification and analysis of hundreds of data points per day on proteins and their phosphorylation state at individual sites. The approach is of particular use where samples show a high degree of sample-to-sample variability such as primary cells from multiple donors. We present a case study on the analysis of >800 phosphorylation data points from three phosphorylation sites in three signaling proteins over multiple time points from platelets isolated from ten donors, demonstrating the technique's potential to determine kinetic and regulatory information from limited cell numbers and to investigate signaling variation within a population. We envisage the approach being of use in the analysis of many cellular processes such as signaling pathway dynamics to identify regulatory feedback loops and the investigation of potential drug/inhibitor responses, using primary cells and tissues, to generate information about how a cell's physiological state changes over time
Recommended from our members
Integrating protein networks and machine learning for disease stratification in the Hereditary Spastic Paraplegias.
The Hereditary Spastic Paraplegias are a group of neurodegenerative diseases characterized by spasticity and weakness in the lower body. Owing to the combination of genetic diversity and variable clinical presentation, the Hereditary Spastic Paraplegias are a strong candidate for protein-protein interaction network analysis as a tool to understand disease mechanism(s) and to aid functional stratification of phenotypes. In this study, experimentally validated human data were used to create a protein-protein interaction network based on the causative genes. Network evaluation as a combination of topological analysis and functional annotation led to the identification of core proteins in putative shared biological processes, such as intracellular transport and vesicle trafficking. The application of machine learning techniques suggested a functional dichotomy linked with distinct sets of clinical presentations, indicating that there is scope to further classify conditions currently described under the same umbrella-term of Hereditary Spastic Paraplegias based on specific molecular mechanisms of disease
- β¦