240 research outputs found
Detecting Human-to-Human Transmission of Avian Influenza A (H5N1)
Effective surveillance, containment response, and field evaluation are essential to contain potential pandemic strain
Ebola virus disease: What clinicians in the United States need to know
In March 2014 the World Health Organization was notified of an outbreak of Ebola virus disease (EVD) in the forest region of Guinea. Over the subsequent 8 months, this outbreak has become the most devastating Ebola epidemic in history with 21,296 infections and 8,429 deaths. The recent introduction of Ebola into noncontiguous countries including the United States from infected travelers highlights the importance of preparedness of all healthcare providers. Early identification and rapid isolation of patients suspected of being infected with Ebola virus is critical to limiting the spread of this virus. Additionally, enhanced understanding of Ebola case definitions, clinical presentation, treatment and infection control strategies will improve the ability of healthcare providers to safe care for patients with Ebola virus disease
Recommended from our members
Care of the Child With Ebola Virus Disease
Objectives: To provide clinicians with practical considerations for care of children with Ebola virus disease in resource-rich settings.
Data Sources: Review of the published medical literature, World Health Organization and government documents, and expert opinion.
Data Synthesis: There are limited data regarding Ebola virus disease in children; however, reported case-fatality proportions in children are high. Ebola virus may affect immune regulation and endothelial function differently in children than adults. Considerations for care of children with Ebola virus disease are presented.
Conclusions: Ebola virus disease is a severe multisystem disease with high mortality in children and adults. Hospitals and clinicians must prepare to provide care for patients with Ebola virus disease before such patients present for care, with particular attention to rigorous infection control to limit secondary cases. Although there is no proven specific treatment for Ebola virus disease, meticulous supportive care offers patients the best chance of survival
Health Benefits, Risks, and Cost-Effectiveness of Influenza Vaccination of Children
Vaccinating children aged 6–23 months, plus all other children at high-risk, will likely be more effective than vaccinating all children against influenza
Recommended from our members
Values for preventing influenza-related morbidity and vaccine adverse events in children
BACKGROUND: Influenza vaccination recently has been recommended for children 6–23 months old, but is not currently recommended for routine use in non-high-risk older children. Information on disease impact, costs, benefits, risks, and community preferences could help guide decisions about which age and risk groups should be vaccinated and strategies for improving coverage. The objective of this study was to measure preferences and willingness-to-pay for changes in health-related quality of life associated with uncomplicated influenza and two rarely-occurring vaccination-related adverse events (anaphylaxis and Guillain-Barré syndrome) in children. METHODS: We conducted telephone interviews with adult members selected at random from a large New England HMO (n = 112). Respondents were given descriptions of four health outcomes: uncomplicated influenza in a hypothetical 1-year-old child of their own, uncomplicated influenza in a hypothetical 14-year-old child of their own, anaphylaxis following vaccination, and Guillain-Barré syndrome. "Uncomplicated influenza" did not require a physician's visit or hospitalization. Preferences (values) for these health outcomes were measured using time-tradeoff and willingness-to-pay questions. Time-tradeoff questions asked the adult to assume they had a child and to consider how much time from the end of their own life they would be willing to surrender to avoid the health outcome in the child. RESULTS: Respondents said they would give a median of zero days of their lives to prevent an episode of uncomplicated influenza in either their (hypothetical) 1-year-old or 14-year-old, 30 days to prevent an episode of vaccination-related anaphylaxis, and 3 years to prevent a vaccination-related case of Guillain-Barré syndrome. Median willingness-to-pay to prevent uncomplicated influenza in a 1-year-old was 100, anaphylaxis 4000. The median willingness-to-pay for an influenza vaccination for their children with no risk of anaphylaxis or Guillain-Barré syndrome was 100, respectively. CONCLUSION: Most respondents said they would not be willing to trade any time from their own lives to prevent uncomplicated influenza in a child of their own, and the time traded did not vary by the age of the hypothetical affected child. However, adults did indicate a willingness-to-pay to prevent uncomplicated influenza in children, and that they would give more money to prevent the illness in a 1-year-old than in a 14-year-old. Respondents also indicated a willingness to pay a premium for a vaccine without any risk of severe complications
The association between serum biomarkers and disease outcome in influenza A(H1N1)pdm09 virus infection: results of two international observational cohort studies
BACKGROUND
Prospective studies establishing the temporal relationship between the degree of inflammation and human influenza disease progression are scarce. To assess predictors of disease progression among patients with influenza A(H1N1)pdm09 infection, 25 inflammatory biomarkers measured at enrollment were analyzed in two international observational cohort studies.
METHODS
Among patients with RT-PCR-confirmed influenza A(H1N1)pdm09 virus infection, odds ratios (ORs) estimated by logistic regression were used to summarize the associations of biomarkers measured at enrollment with worsened disease outcome or death after 14 days of follow-up for those seeking outpatient care (FLU 002) or after 60 days for those hospitalized with influenza complications (FLU 003). Biomarkers that were significantly associated with progression in both studies (p<0.05) or only in one (p<0.002 after Bonferroni correction) were identified.
RESULTS
In FLU 002 28/528 (5.3%) outpatients had influenza A(H1N1)pdm09 virus infection that progressed to a study endpoint of complications, hospitalization or death, whereas in FLU 003 28/170 (16.5%) inpatients enrolled from the general ward and 21/39 (53.8%) inpatients enrolled directly from the ICU experienced disease progression. Higher levels of 12 of the 25 markers were significantly associated with subsequent disease progression. Of these, 7 markers (IL-6, CD163, IL-10, LBP, IL-2, MCP-1, and IP-10), all with ORs for the 3(rd) versus 1(st) tertile of 2.5 or greater, were significant (p<0.05) in both outpatients and inpatients. In contrast, five markers (sICAM-1, IL-8, TNF-α, D-dimer, and sVCAM-1), all with ORs for the 3(rd) versus 1(st) tertile greater than 3.2, were significantly (p≤.002) associated with disease progression among hospitalized patients only.
CONCLUSIONS
In patients presenting with varying severities of influenza A(H1N1)pdm09 virus infection, a baseline elevation in several biomarkers associated with inflammation, coagulation, or immune function strongly predicted a higher risk of disease progression. It is conceivable that interventions designed to abrogate these baseline elevations might affect disease outcome
Early Identification and Prevention of the Spread of Ebola - United States
In response to the 2014-2016 Ebola virus disease (Ebola) epidemic in West Africa, CDC prepared for the potential introduction of Ebola into the United States. The immediate goals were to rapidly identify and isolate any cases of Ebola, prevent transmission, and promote timely treatment of affected patients. CDC\u27s technical expertise and the collaboration of multiple partners in state, local, and municipal public health departments; health care facilities; emergency medical services; and U.S. government agencies were essential to the domestic preparedness and response to the Ebola epidemic and relied on longstanding partnerships. CDC established a comprehensive response that included two new strategies: 1) active monitoring of travelers arriving from countries affected by Ebola and other persons at risk for Ebola and 2) a tiered system of hospital facility preparedness that enabled prioritization of training. CDC rapidly deployed a diagnostic assay for Ebola virus (EBOV) to public health laboratories. Guidance was developed to assist in evaluation of patients possibly infected with EBOV, for appropriate infection control, to support emergency responders, and for handling of infectious waste. CDC rapid response teams were formed to provide assistance within 24 hours to a health care facility managing a patient with Ebola. As a result of the collaborations to rapidly identify, isolate, and manage Ebola patients and the extensive preparations to prevent spread of EBOV, the United States is now better prepared to address the next global infectious disease threat.The activities summarized in this report would not have been possible without collaboration with many U.S. and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html)
Low Frequency of Poultry-to-Human H5N1 Transmission, Southern Cambodia, 2005
Transmission is low despite extensive human contact with poultry
- …