27 research outputs found

    Comment on ``Consistency, amplitudes and probabilities in quantum theory'' by A. Caticha

    Full text link
    A carefully written paper by A. Caticha [Phys. Rev. A57, 1572 (1998)] applies consistency arguments to derive the quantum mechanical rules for compounding probability amplitudes in much the same way as earlier work by the present author [J. Math. Phys. 29, 398 (1988) and Int. J. Theor. Phys. 27, 543 (1998)]. These works are examined together to find the minimal assumptions needed to obtain the most general results

    Casimir-Polder interaction of atoms with magnetodielectric bodies

    Full text link
    A general theory of the Casimir-Polder interaction of single atoms with dispersing and absorbing magnetodielectric bodies is presented, which is based on QED in linear, causal media. Both ground-state and excited atoms are considered. Whereas the Casimir-Polder force acting on a ground-state atom can conveniently be derived from a perturbative calculation of the atom-field coupling energy, an atom in an excited state is subject to transient force components that can only be fully understood by a dynamical treatment based on the body-assisted vacuum Lorentz force. The results show that the Casimir-Polder force can be influenced by the body-induced broadening and shifting of atomic transitions - an effect that is not accounted for within lowest-order perturbation theory. The theory is used to study the Casimir-Polder force of a ground-state atom placed within a magnetodielectric multilayer system, with special emphasis on thick and thin plates as well as a planar cavity consisting of two thick plates. It is shown how the competing attractive and repulsive force components related to the electric and magnetic properties of the medium, respectively, can - for sufficiently strong magnetic properties - lead to the formation of potential walls and wells.Comment: 16 pages, 6 figures, minor additions and correction

    Using atomic interference to probe atom-surface interaction

    Get PDF
    We show that atomic interference in the reflection from two suitably polarized evanescent waves is sensitive to retardation effects in the atom-surface interaction for specific experimental parameters. We study the limit of short and long atomic de Broglie wavelength. The former case is analyzed in the semiclassical approximation (Landau-Zener model). The latter represents a quantum regime and is analyzed by solving numerically the associated coupled Schroedinger equations. We consider a specific experimental scheme and show the results for rubidium (short wavelength) and the much lighter meta-stable helium atom (long wavelength). The merits of each case are then discussed.Comment: 11 pages, including 6 figures, submitted to Phys. Rev. A, RevTeX sourc

    Quantum Integrals of Motion for Variable Quadratic Hamiltonians

    Full text link
    We construct the integrals of motion for several models of the quantum damped oscillators in nonrelativistic quantum mechanics in a framework of a general approach to the time-dependent Schroedinger equation with variable quadratic Hamiltonians. An extension of Lewis-Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy related positive operators is determined for the oscillators under consideration. A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application.Comment: 32 pages, no figure

    An addition theorem for spherical harmonics

    No full text

    Large restriction fragments containing poly-TG are highly polymorphic in a variety of vertebrates.

    No full text
    Southern blots of genomic DNA from a variety of species digested by restriction endonucleases having a four-bp specificity, were probed with a bovine genomic clone consisting of seven tandem poly-TG stretches separated by a 29bp linker sequence. Highly variable DNA 'fingerprint' patterns were obtained in chicken, sheep, and horse, moderately variable DNA 'fingerprints' in mouse and man, and a monomorphic pattern in Drosophila. In chicken, horse and man a (TG)10 synthetic oligonucleotide probe gave results identical to those given by the bovine probe. Furthermore, in chicken the DNA fingerprint variation showed typical Mendelian inheritance and differed from the fingerprints obtained with Jeffreys 33.6 and M13 minisatellite probes. Thus, for a variety of vertebrate species, poly-TG-containing probes can uncover useful genetic variation
    corecore