10 research outputs found

    Task-related EEG Activity for the Senders in the Three BBI Pairs.

    No full text
    <p>Each panel shows the log power (mean +/−1 standard deviation) in the control band for a Sender during the final 2.5s before the cursor hit the target for all rocket trials (red). For comparison, data from airplane trials for the same time period are shown in blue. The control bands were as follows: Pair 1∶11–13 Hz; Pair 2∶18–20 Hz; Pair 3∶11–28 Hz. There is a clear separation in EEG control signals for the two types of trials for the Senders in Pairs 1 and 3, but not in Pair 2.</p

    Experimental Set-Up.

    No full text
    <p>(A) Schematic diagram of set-up. Brain signals from one participant (the “Sender”) were recorded using EEG. When imagined hand movements were detected by the computer, a “Fire” command was transmitted over the internet to the TMS machine, which caused an upward movement of the right hand of a second participant (the “Receiver”), resulting in a press by the hand on a touchpad. This press triggered the firing of the cannon in the game seen by the Sender. Red lines mark the part of the architecture that corresponds to the direct brain-to-brain interface. (B) Screen shot from the game. In 50% of the trials, the pirate ship on the right side (skull-and-bones) shoots a rocket (top center) towards a city on the left. The Sender engages in motor imagery to move the white cursor on the left to hit the blue circular target in order to fire the cannon (bottom center) and destroy the rocket before it reaches the city. In the other 50% of the trials, a supply airplane moves from the right to the left side of the screen (not shown). The Sender rests in this case and refrains from imagery in order to avoid hitting the target.</p

    TMS Set-Up.

    No full text
    <p>During the experiment, the Receiver was accommodated on a BrainSight chair, with the back of the head resting against a neckrest (A) and kept in place by an adjustable arm with padded forehead prongs (B). A 90 mm circular TMS coil (C) was kept in place by an articulated arm (D). During the experiment, the receiver wore noise-cancellation earphones (not shown) while listening to a selection of music or to an audiobook of his/her own choice.</p

    Stimulation Parameters for the Three Receivers.

    No full text
    <p>The figure represents the approximate position of the TMS circle coil (in red) on the head of the three participants. The “+” sign represents the location of the vertex. The white arrow shows the direction of the inducing current in the coil; the numbers represent the intensity of the magnetic stimulation used for each receiver. As is commonplace in the TMS literature, the intensity of the stimulation is expressed as a percentage of the maximum stimulator output (which was 2.0 T).</p

    BBI Accuracy.

    No full text
    <p>ROC curves for each of the three pairs of subjects (columns), presented in terms of overall pair accuracy in the game (top panels), accuracy of the Sender (middle panels), and accuracy of the Receiver (bottom panels). Red lines and areas represent the experimental conditions, while grey lines and areas represent the control conditions.</p

    Mutual information between Sender and Receiver response vectors across the different conditions and pairs of participants.

    No full text
    <p>Values in parenthesis indicate the total number of bits transferred during the corresponding block.</p><p>Mutual information between Sender and Receiver response vectors across the different conditions and pairs of participants.</p

    EEG Traces during the Two Trial Types and Timing of Information Transfer from Sender to Receiver during a Rocket Trial.

    No full text
    <p>EEG signal during one rocket trial (red trace) and one airplane trial (blue trace) from the Sender in Pair 1 is shown. The traces demonstrate suppression of power in the mu control band (11–13 Hz) during the rocket trial due to motor imagery. Dashed vertical lines mark timestamps of key events in the transfer of information in the BBI from Sender to Receiver during the rocket trial.</p

    Response Vectors for the Sender and Receiver across Three Pairs

    No full text
    <p>. Each vertical tick represents a trial; long lines represent behavioral responses. Experimental blocks are marked by a red background; control blocks by a grey background. The blue dashed line represents the block-specific value of the regression coefficient β (see text for details); the red line represents the block-specific value of the mutual information between the two vectors. Note that in all six experimental blocks, the value of β was significantly greater than zero while in all control blocks, the value was zero. Likewise, about 4 to 13 bits of information (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0111332#pone-0111332-t003" target="_blank">Table 3</a>) were transferred from one brain to another during experimental blocks, compared to zero bits in the control blocks.</p

    EEG Set-Up.

    No full text
    <p>EEG signals being recorded from a subject (the “Sender”) as the subject watches the computer game (the game screen is to the left and not shown in the picture). The larger screen displays EEG signals processed by the BCI2000 software. The smaller laptop screen placed further away is from the live Skype session and shows a “Receiver” subject in the TMS lab across the University of Washington campus. (Image from the pilot study referred to in the text).</p
    corecore