11 research outputs found

    Topographical Manipulation of Microparticles and Cells with Acoustic Microstreaming

    No full text
    Precise and reproducible manipulation of synthetic and biological microscale objects in complex environments is essential for many practical biochip and microfluidic applications. Here, we present an attractive acoustic topographical manipulation (ATM) method to achieve efficient and reproducible manipulation of diverse microscale objects. This new guidance method relies on the acoustically induced localized microstreaming forces generated around microstructures, which are capable of trapping nearby microobjects and manipulating them along a determined trajectory based on local topographic features. This unique phenomenon is investigated by numerical simulations examining the local microstreaming in the presence of microscale boundaries under the standing acoustic wave. This method can be used to manipulate a single microobject around a complex structure as well as collectively manipulate multiple objects moving synchronously along complicated shapes. Furthermore, the ATM can serve for automated maze solving by autonomously manipulating microparticles with diverse geometries and densities, including live cells, through complex maze-like topographical features without external feedback, particle modification, or adjustment of operational parameters

    Topographical Manipulation of Microparticles and Cells with Acoustic Microstreaming

    No full text
    Precise and reproducible manipulation of synthetic and biological microscale objects in complex environments is essential for many practical biochip and microfluidic applications. Here, we present an attractive acoustic topographical manipulation (ATM) method to achieve efficient and reproducible manipulation of diverse microscale objects. This new guidance method relies on the acoustically induced localized microstreaming forces generated around microstructures, which are capable of trapping nearby microobjects and manipulating them along a determined trajectory based on local topographic features. This unique phenomenon is investigated by numerical simulations examining the local microstreaming in the presence of microscale boundaries under the standing acoustic wave. This method can be used to manipulate a single microobject around a complex structure as well as collectively manipulate multiple objects moving synchronously along complicated shapes. Furthermore, the ATM can serve for automated maze solving by autonomously manipulating microparticles with diverse geometries and densities, including live cells, through complex maze-like topographical features without external feedback, particle modification, or adjustment of operational parameters

    Magneto–Acoustic Hybrid Nanomotor

    No full text
    Efficient and controlled nanoscale propulsion in harsh environments requires careful design and manufacturing of nanomachines, which can harvest and translate the propelling forces with high spatial and time resolution. Here we report a new class of artificial nanomachine, named magneto–acoustic hybrid nanomotor, which displays efficient propulsion in the presence of either magnetic or acoustic fields without adding any chemical fuel. These fuel-free hybrid nanomotors, which comprise a magnetic helical structure and a concave nanorod end, are synthesized using a template-assisted electrochemical deposition process followed by segment-selective chemical etching. Dynamic switching of the propulsion mode with reversal of the movement direction and digital speed regulation are demonstrated on a single nanovehicle. These hybrid nanomotors exhibit a diverse biomimetic collective behavior, including stable aggregation, swarm motion, and swarm vortex, triggered in response to different field inputs. Such adaptive hybrid operation and controlled collective behavior hold considerable promise for designing smart nanovehicles that autonomously reconfigure their operation mode according to their mission or in response to changes in their surrounding environment or in their own performance, thus holding considerable promise for diverse practical biomedical applications of fuel-free nanomachines

    Swimming Microrobot Optical Nanoscopy

    No full text
    Optical imaging plays a fundamental role in science and technology but is limited by the ability of lenses to resolve small features below the fundamental diffraction limit. A variety of nanophotonic devices, such as metamaterial superlenses and hyperlenses, as well as microsphere lenses, have been proposed recently for subdiffraction imaging. The implementation of these micro/nanostructured lenses as practical and efficient imaging approaches requires locomotive capabilities to probe specific sites and scan large areas. However, directed motion of nanoscale objects in liquids must overcome low Reynolds number viscous flow and Brownian fluctuations, which impede stable and controllable scanning. Here we introduce a new imaging method, named swimming microrobot optical nanoscopy, based on untethered chemically powered microrobots as autonomous probes for subdiffraction optical scanning and imaging. The microrobots are made of high-refractive-index microsphere lenses and powered by local catalytic reactions to swim and scan over the sample surface. Autonomous motion and magnetic guidance of microrobots enable large-area, parallel and nondestructive scanning with subdiffraction resolution, as illustrated using soft biological samples such as neuron axons, protein microtubulin, and DNA nanotubes. Incorporating such imaging capacities in emerging nanorobotics technology represents a major step toward ubiquitous nanoscopy and smart nanorobots for spectroscopy and imaging

    A Local Nanofiber-Optic Ear

    No full text
    The development of acoustic sensors that are compact, have simple read-out mechanisms, and have geometries that enable them to be inserted/embedded deep in materials is of great interest for acoustic-based imaging technologies and novel analytical instruments. Fiber-optic-based detectors are the most logical choice to satisfy these demands, but scaling down the size to sub-micrometer dimensions and uncovering transduction mechanisms that can be more robust than interferometric techniques in dynamic environments has been challenging. In this work, we demonstrate a non-interference-based acoustic ear that utilizes the movement of plasmonic nanoparticles embedded in the near field of a nanofiber optic. The modulated optical signal induced by sound waves can be read-out through transmission through the nanofiber or by tracking the scattering of the nanoparticles in the far field. By utilizing a thin, compressible cladding on the nanofibers, acoustic intensities of <10<sup>–8</sup> W/m<sup>2</sup> can be detected by the devices over an interaction area of <4 μm<sup>2</sup>, representing a measured acoustic power at the sensor of 10<sup>–21</sup> W. With the ability to modify the mechanical properties of the cladding, change the size of the plasmonic nanoparticle, and alter the guided wavelength, the performance of this platform is highly tunable and ideal for compact, deep-body acoustic probes

    Highly Efficient Freestyle Magnetic Nanoswimmer

    No full text
    The unique swimming strategies of natural microorganisms have inspired recent development of magnetic micro/nanorobots powered by artificial helical or flexible flagella. However, as artificial nanoswimmers with unique geometries are being developed, it is critical to explore new potential modes for kinetic optimization. For example, the freestyle stroke is the most efficient of the competitive swimming strokes for humans. Here we report a new type of magnetic nanorobot, a symmetric multilinked two-arm nanoswimmer, capable of efficient “freestyle” swimming at low Reynolds numbers. Excellent agreement between the experimental observations and theoretical predictions indicates that the powerful “freestyle” propulsion of the two-arm nanorobot is attributed to synchronized oscillatory deformations of the nanorobot under the combined action of magnetic field and viscous forces. It is demonstrated for the first time that the nonplanar propulsion gait due to the cooperative “freestyle” stroke of the two magnetic arms can be powered by a plane oscillatory magnetic field. These two-arm nanorobots are capable of a powerful propulsion up to 12 body lengths per second, along with on-demand speed regulation and remote navigation. Furthermore, the nonplanar propulsion gait powered by the consecutive swinging of the achiral magnetic arms is more efficient than that of common chiral nanohelical swimmers. This new swimming mechanism and its attractive performance opens new possibilities in designing remotely actuated nanorobots for biomedical operation at the nanoscale

    Self-Propelled Nanomotors Autonomously Seek and Repair Cracks

    No full text
    Biological self-healing involves the autonomous localization of healing agents at the site of damage. Herein, we design and characterize a synthetic repair system where self-propelled nanomotors autonomously seek and localize at microscopic cracks and thus mimic salient features of biological wound healing. We demonstrate that these chemically powered catalytic nanomotors, composed of conductive Au/Pt spherical Janus particles, can autonomously detect and repair microscopic mechanical defects to restore the electrical conductivity of broken electronic pathways. This repair mechanism capitalizes on energetic wells and obstacles formed by surface cracks, which dramatically alter the nanomotor dynamics and trigger their localization at the defects. By developing models for self-propelled Janus nanomotors on a cracked surface, we simulate the systems’ dynamics over a range of particle speeds and densities to verify the process by which the nanomotors autonomously localize and accumulate at the cracks. We take advantage of this localization to demonstrate that the nanomotors can form conductive “patches” to repair scratched electrodes and restore the conductive pathway. Such a nanomotor-based repair system represents an important step toward the realization of biomimetic nanosystems that can autonomously sense and respond to environmental changes, a development that potentially can be expanded to a wide range of applications, from self-healing electronics to targeted drug delivery

    Self-Propelled Nanomotors Autonomously Seek and Repair Cracks

    No full text
    Biological self-healing involves the autonomous localization of healing agents at the site of damage. Herein, we design and characterize a synthetic repair system where self-propelled nanomotors autonomously seek and localize at microscopic cracks and thus mimic salient features of biological wound healing. We demonstrate that these chemically powered catalytic nanomotors, composed of conductive Au/Pt spherical Janus particles, can autonomously detect and repair microscopic mechanical defects to restore the electrical conductivity of broken electronic pathways. This repair mechanism capitalizes on energetic wells and obstacles formed by surface cracks, which dramatically alter the nanomotor dynamics and trigger their localization at the defects. By developing models for self-propelled Janus nanomotors on a cracked surface, we simulate the systems’ dynamics over a range of particle speeds and densities to verify the process by which the nanomotors autonomously localize and accumulate at the cracks. We take advantage of this localization to demonstrate that the nanomotors can form conductive “patches” to repair scratched electrodes and restore the conductive pathway. Such a nanomotor-based repair system represents an important step toward the realization of biomimetic nanosystems that can autonomously sense and respond to environmental changes, a development that potentially can be expanded to a wide range of applications, from self-healing electronics to targeted drug delivery

    Turning Erythrocytes into Functional Micromotors

    No full text
    Attempts to apply artificial nano/micromotors for diverse biomedical applications have inspired a variety of strategies for designing motors with diverse propulsion mechanisms and functions. However, existing artificial motors are made exclusively of synthetic materials, which are subject to serious immune attack and clearance upon entering the bloodstream. Herein we report an elegant approach that turns natural red blood cells (RBCs) into functional micromotors with the aid of ultrasound propulsion and magnetic guidance. Iron oxide nanoparticles are loaded into the RBCs, where their asymmetric distribution within the cells results in a net magnetization, thus enabling magnetic alignment and guidance under acoustic propulsion. The RBC motors display efficient guided and prolonged propulsion in various biological fluids, including undiluted whole blood. The stability and functionality of the RBC motors, as well as the tolerability of regular RBCs to the ultrasound operation, are carefully examined. Since the RBC motors preserve the biological and structural features of regular RBCs, these motors possess a wide range of antigenic, transport, and mechanical properties that common synthetic motors cannot achieve and thus hold considerable promise for a number of practical biomedical uses

    Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments

    No full text
    Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios
    corecore