56 research outputs found

### Finitely Generated Nil but Not Nilpotent Evolution Algebra

To use evolution algebras to model population dynamics that both allow extinction and introduction of certain gametes in finite generations, nilpotency must be built into the algebraic structures of these algebras with the entire algebras not to be nilpotent if the populations are assumed to evolve for a long period of time. To adequately address this need, evolution algebras over rings with nilpotent elements must be considered instead of evolution algebras over fields. This paper develops some criteria, which are computational in nature, about the nilpotency of these algebras, and shows how to construct finitely generated evolution algebras which are nil but not nilpotent

### Finite-Time Perturbations of Dynamical Systems and Applications to Tumor Therapy

We study finite-time perturbations of dynamical systems. We prove that finite-time perturbed dynamical systems are asymptotically equivalent to unperturbed dynamical systems. And so the asymptotical behavior of finite-time perturbed systems can be studied by unperturbed systems. As an example, we study a system perturbed by drug treatments

### Lytic cycle: A defining process in oncolytic virotherapy

The viral lytic cycle is an important process in oncolytic virotherapy. Most mathematical models for oncolytic virotherapy do not incorporate this process. In this article, we propose a mathematical model with the viral lytic cycle based on the basic mathematical model for oncolytic virotherapy. The viral lytic cycle is characterized by two parameters, the time period of the viral lytic cycle and the viral burst size. The time period of the viral lytic cycle is modeled as a delay parameter. The model is a nonlinear system of delay differential equations. The model reveals a striking feature that the critical value of the period of the viral lytic cycle is determined by the viral burst size. There are two threshold values for the burst size. Below the first threshold, the system has an unstable trivial equilibrium and a globally stable virus free equilibrium for any nonnegative delay, while the system has a third positive equilibrium when the burst size is greater than the first threshold. When the burst size is above the second threshold, there is a functional relation between the bifurcation value of the delay parameter for the period of the viral lytic cycle and the burst size. If the burst size is greater than the second threshold, the positive equilibrium is stable when the period of the viral lytic cycle is smaller than the bifurcation value, while the system has orbitally stable periodic solutions when the period of the lytic cycle is longer than the bifurcation value. However, this bifurcation value becomes smaller when the burst size becomes bigger. The viral lytic cycle may explain the oscillation phenomena observed in many studies. An important clinic implication is that the burst size should be carefully modified according to its effect on the lytic cycle when a type of a virus is modified for virotherapy, so that the period of the viral lytic cycle is in a suitable range which can break away the stability of the positive equilibria or periodic solutions. (C) 2012 Elsevier Inc. All rights reserved

### The Role of the Innate Immune System in Oncolytic Virotherapy

The complexity of the immune responses is a major challenge in current virotherapy. This study incorporates the innate immune response into our basic model for virotherapy and investigates how the innate immunity affects the outcome of virotherapy. The viral therapeutic dynamics is largely determined by the viral burst size, relative innate immune killing rate, and relative innate immunity decay rate. The innate immunity may complicate virotherapy in the way of creating more equilibria when the viral burst size is not too big, while the dynamics is similar to the system without innate immunity when the viral burst size is big

### Lumpability Abstractions of Rule-based Systems

The induction of a signaling pathway is characterized by transient complex formation and mutual posttranslational modification of proteins. To faithfully capture this combinatorial process in a mathematical model is an important challenge in systems biology. Exploiting the limited context on which most binding and modification events are conditioned, attempts have been made to reduce the combinatorial complexity by quotienting the reachable set of molecular species, into species aggregates while preserving the deterministic semantics of the thermodynamic limit. Recently we proposed a quotienting that also preserves the stochastic semantics and that is complete in the sense that the semantics of individual species can be recovered from the aggregate semantics. In this paper we prove that this quotienting yields a sufficient condition for weak lumpability and that it gives rise to a backward Markov bisimulation between the original and aggregated transition system. We illustrate the framework on a case study of the EGF/insulin receptor crosstalk.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005