5,901 research outputs found

    On the structure of line-driven winds near black holes

    Full text link
    A general physical mechanism of the formation of line-driven winds at the vicinity of strong gravitational field sources is investigated in the frame of General Relativity. We argue that gravitational redshifting should be taken into account to model such outflows. The generalization of the Sobolev approximation in the frame of General Relativity is presented. We consider all processes in the metric of a nonrotating (Schwarzschild) black hole. The radiation force that is due to absorbtion of the radiation flux in lines is derived. It is demonstrated that if gravitational redshifting is taken into account, the radiation force becomes a function of the local velocity gradient (as in the standard line-driven wind theory) and the gradient of g00g_{00}. We derive a general relativistic equation of motion describing such flow. A solution of the equation of motion is obtained and confronted with that obtained from the Castor, Abbott & Klein (CAK) theory. It is shown that the proposed mechanism could have an important contribution to the formation of line-driven outflows from compact objects.Comment: 20 pages, submitted to Ap

    The generation of gravitational waves. 2: The post-linear formalism revisited

    Get PDF
    Two different versions of the Green's function for the scalar wave equation in weakly curved spacetime (one due to DeWitt and DeWitt, the other to Thorne and Kovacs) are compared and contrasted; and their mathematical equivalence is demonstrated. The DeWitt-DeWitt Green's function is used to construct several alternative versions of the Thorne-Kovacs post-linear formalism for gravitational-wave generation. Finally it is shown that, in calculations of gravitational bremsstrahlung radiation, some of our versions of the post-linear formalism allow one to treat the interacting bodies as point masses, while others do not

    Gravitational-wave bursts from the nuclei of distant galaxies and quasars: Proposal for detection using Doppler tracking of interplanetary spacecraft

    Get PDF
    Supermassive black holes which exist in the nuclei of many quasars and galaxies are examined along with the collapse which forms these holes and subsequent collisions between them which produce strong, broad-band bursts of gravitational waves. Such bursts might arrive at earth as often as 50 times per year--or as rarely as once each 300 years. The detection of such bursts with dual-frequency Doppler tracking of interplanetary spacecraft is considered

    Tidal coupling of a Schwarzschild black hole and circularly orbiting moon

    Get PDF
    We describe the possibility of using LISA's gravitational-wave observations to study, with high precision, the response of a massive central body to the tidal gravitational pull of an orbiting, compact, small-mass object. Motivated by this application, we use first-order perturbation theory to study tidal coupling for an idealized case: a massive Schwarzschild black hole, tidally perturbed by a much less massive moon in a distant, circular orbit. We investigate the details of how the tidal deformation of the hole gives rise to an induced quadrupole moment in the hole's external gravitational field at large radii. In the limit that the moon is static, we find, in Schwarzschild coordinates and Regge-Wheeler gauge, the surprising result that there is no induced quadrupole moment. We show that this conclusion is gauge dependent and that the static, induced quadrupole moment for a black hole is inherently ambiguous. For the orbiting moon and the central Schwarzschild hole, we find (in agreement with a recent result of Poisson) a time-varying induced quadrupole moment that is proportional to the time derivative of the moon's tidal field. As a partial analog of a result derived long ago by Hartle for a spinning hole and a stationary distant companion, we show that the orbiting moon's tidal field induces a tidal bulge on the hole's horizon, and that the rate of change of the horizon shape leads the perturbing tidal field at the horizon by a small angle.Comment: 14 pages, 0 figures, submitted to Phys. Rev.

    Head-on infall of two compact objects: Third post-Newtonian Energy Flux

    Full text link
    Head-on infall of two compact objects with arbitrary mass ratio is investigated using the multipolar post-Minkowskian approximation method. At the third post-Newtonian order the energy flux, in addition to the instantaneous contributions, also includes hereditary contributions consisting of the gravitational-wave tails, tails-of-tails and the tail-squared terms. The results are given both for infall from infinity and also for infall from a finite distance. These analytical expressions should be useful for the comparison with the high accuracy numerical relativity results within the limit in which post-Newtonian approximations are valid.Comment: 25 pages, 2 figures, This version includes the changes appearing in the Erratum published in Phys. Rev.
    corecore