15 research outputs found
Towards a Flexible Deep Learning Method for Automatic Detection of Clinically Relevant Multi-Modal Events in the Polysomnogram
Much attention has been given to automatic sleep staging algorithms in past
years, but the detection of discrete events in sleep studies is also crucial
for precise characterization of sleep patterns and possible diagnosis of sleep
disorders. We propose here a deep learning model for automatic detection and
annotation of arousals and leg movements. Both of these are commonly seen
during normal sleep, while an excessive amount of either is linked to disrupted
sleep patterns, excessive daytime sleepiness impacting quality of life, and
various sleep disorders. Our model was trained on 1,485 subjects and tested on
1,000 separate recordings of sleep. We tested two different experimental setups
and found optimal arousal detection was attained by including a recurrent
neural network module in our default model with a dynamic default event window
(F1 = 0.75), while optimal leg movement detection was attained using a static
event window (F1 = 0.65). Our work show promise while still allowing for
improvements. Specifically, future research will explore the proposed model as
a general-purpose sleep analysis model.Comment: Accepted for publication in 41st International Engineering in
Medicine and Biology Conference (EMBC), July 23-27, 201
A deep learning architecture to detect events in EEG signals during sleep
International audienceElectroencephalography (EEG) during sleep is used by clinicians to evaluate various neurological disorders. In sleep medicine, it is relevant to detect macro-events (≥ 10 s) such as sleep stages, and micro-events (≤ 2 s) such as spindles and K-complexes. Annotations of such events require a trained sleep expert, a time consuming and tedious process with a large inter-scorer variability. Automatic algorithms have been developed to detect various types of events but these are event-specific. We propose a deep learning method that jointly predicts locations, durations and types of events in EEG time series. It relies on a convolutional neural network that builds a feature representation from raw EEG signals. Numerical experiments demonstrate efficiency of this new approach on various event detection tasks compared to current state-of-the-art, event specific, algorithms
DOSED: A deep learning approach to detect multiple sleep micro-events in EEG signal
International audienceBackground: Electroencephalography (EEG) monitors brain activity during sleep and is used to identify sleep disorders. In sleep medicine, clinicians interpret raw EEG signals in so-called sleep stages, which are assigned by experts to every 30 s window of signal. For diagnosis, they also rely on shorter prototypical micro-architecture events which exhibit variable durations and shapes, such as spindles, K-complexes or arousals. Annotating such events is traditionally performed by a trained sleep expert, making the process time consuming, tedious and subject to inter-scorer variability. To automate this procedure, various methods have been developed, yet these are event-specific and rely on the extraction of hand-crafted features.New method: We propose a novel deep learning architecure called Dreem One Shot Event Detector (DOSED). DOSED jointly predicts locations, durations and types of events in EEG time series. The proposed approach, applied here on sleep related micro-architecture events, is inspired by object detectors developed for computer vision such as YOLO and SSD. It relies on a convolutional neural network that builds a feature representation from raw EEG signals, as well as two modules performing localization and classification respectively.Results and comparison with other methods: The proposed approach is tested on 4 datasets and 3 types of events (spindles, K-complexes, arousals) and compared to the current state-of-the-art detection algorithms.Conclusions: Results demonstrate the versatility of this new approach and improved performance compared to the current state-of-the-art detection method
Towards a Flexible Deep Learning Method for Automatic Detection of Clinically Relevant Multi-Modal Events in the Polysomnogram
To study coordination in complex social systems such as financial markets, the authors introduce a new prediction market set-up that accounts for fundamental uncertainty. Nonetheless, the market is designed so that its total value is known, and thus its rationality can be evaluated. In two experiments, the authors observe that quick consensus emerges early yielding pronounced mispricing, which however does not show the standard "bubble-and-crash". The set-up is implemented within the xYotta collaborative platform (https://xyotta.com). xYotta's functionality offers a large number of extensions of various complexity such as running several parallel markets with the same or different users, as well as collaborative project development in which projects undergo the equivalent of an IPO (initial public offering) and whose subsequent trading matches the role of financial markets in determining value. xYotta is thus offered to researchers as an open source software for the broad investigation of complex systems with human participants.ISSN:1864-604
Performance of an Ambulatory Dry-EEG Device for Auditory Closed-Loop Stimulation of Sleep Slow Oscillations in the Home Environment
Recent research has shown that auditory closed-loop stimulation can enhance sleep slow oscillations (SO) to improve N3 sleep quality and cognition. Previous studies have been conducted in lab environments. The present study aimed to validate and assess the performance of a novel ambulatory wireless dry-EEG device (WDD), for auditory closed-loop stimulation of SO during N3 sleep at home. The performance of the WDD to detect N3 sleep automatically and to send auditory closed-loop stimulation on SO were tested on 20 young healthy subjects who slept with both the WDD and a miniaturized polysomnography (part 1) in both stimulated and sham nights within a double blind, randomized and crossover design. The effects of auditory closed-loop stimulation on delta power increase were assessed after one and 10 nights of stimulation on an observational pilot study in the home environment including 90 middle-aged subjects (part 2).The first part, aimed at assessing the quality of the WDD as compared to a polysomnograph, showed that the sensitivity and specificity to automatically detect N3 sleep in real-time were 0.70 and 0.90, respectively. The stimulation accuracy of the SO ascending-phase targeting was 45 ± 52°. The second part of the study, conducted in the home environment, showed that the stimulation protocol induced an increase of 43.9% of delta power in the 4 s window following the first stimulation (including evoked potentials and SO entrainment effect). The increase of SO response to auditory stimulation remained at the same level after 10 consecutive nights. The WDD shows good performances to automatically detect in real-time N3 sleep and to send auditory closed-loop stimulation on SO accurately. These stimulation increased the SO amplitude during N3 sleep without any adaptation effect after 10 consecutive nights. This tool provides new perspectives to figure out novel sleep EEG biomarkers in longitudinal studies and can be interesting to conduct broad studies on the effects of auditory stimulation during sleep