48 research outputs found

    Drosophila in the Study of Neurodegenerative Disease

    Get PDF
    As populations benefit from increasing lifespans, neurodegenerative diseases have emerged as a critical health concern. How can the fruit fly, Drosophila melanogaster, contribute to curing human diseases of the nervous system? A growing number of neurodegenerative diseases, as well as other human diseases, are being modeled in Drosophila and used as a platform to identify and validate cellular pathways that contribute to neurodegeneration and to identify promising therapeutic targets by using a variety of approaches from screens to target validation. The unique properties and tools available in the Drosophila system, coupled with the fact that testing in vivo has proven highly productive, have accelerated the progress of testing therapeutic strategies in mice and, ultimately, humans. This review highlights selected recent applications to illustrate the use of Drosophila in studying neurodegenerative diseases

    Analysis of STAT1 Activation by Six FGFR3 Mutants Associated with Skeletal Dysplasia Undermines Dominant Role of STAT1 in FGFR3 Signaling in Cartilage

    Get PDF
    Activating mutations in FGFR3 tyrosine kinase cause several forms of human skeletal dysplasia. Although the mechanisms of FGFR3 action in cartilage are not completely understood, it is believed that the STAT1 transcription factor plays a central role in pathogenic FGFR3 signaling. Here, we analyzed STAT1 activation by the N540K, G380R, R248C, Y373C, K650M and K650E-FGFR3 mutants associated with skeletal dysplasias. In a cell-free kinase assay, only K650M and K650E-FGFR3 caused activatory STAT1(Y701) phosphorylation. Similarly, in RCS chondrocytes, HeLa, and 293T cellular environments, only K650M and K650E-FGFR3 caused strong STAT1 activation. Other FGFR3 mutants caused weak (HeLa) or no activation (293T and RCS). This contrasted with ERK MAP kinase activation, which was strongly induced by all six mutants and correlated with the inhibition of proliferation in RCS chondrocytes. Thus the ability to activate STAT1 appears restricted to the K650M and K650E-FGFR3 mutants, which however account for only a small minority of the FGFR3-related skeletal dysplasia cases. Other pathways such as ERK should therefore be considered as central to pathological FGFR3 signaling in cartilage

    IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome

    Get PDF
    Expansion of the polyglutamine repeat within the protein Huntingtin (Htt) causes Huntington's disease, a neurodegenerative disease associated with aging and the accumulation of mutant Htt in diseased neurons. Understanding the mechanisms that influence Htt cellular degradation may target treatments designed to activate mutant Htt clearance pathways. We find that Htt is phosphorylated by the inflammatory kinase IKK, enhancing its normal clearance by the proteasome and lysosome. Phosphorylation of Htt regulates additional post-translational modifications, including Htt ubiquitination, SUMOylation, and acetylation, and increases Htt nuclear localization, cleavage, and clearance mediated by lysosomal-associated membrane protein 2A and Hsc70. We propose that IKK activates mutant Htt clearance until an age-related loss of proteasome/lysosome function promotes accumulation of toxic post-translationally modified mutant Htt. Thus, IKK activation may modulate mutant Htt neurotoxicity depending on the cell's ability to degrade the modified species

    Pregnancy-related factors and the risk of breast carcinoma in situ and invasive breast cancer among postmenopausal women in the California Teachers Study cohort

    Get PDF
    Abstract Introduction Although pregnancy-related factors such as nulliparity and late age at first full-term pregnancy are well-established risk factors for invasive breast cancer, the roles of these factors in the natural history of breast cancer development remain unclear. Methods Among 52,464 postmenopausal women participating in the California Teachers Study (CTS), 624 were diagnosed with breast carcinoma in situ (CIS) and 2,828 with invasive breast cancer between 1995 and 2007. Multivariable Cox proportional hazards regression methods were used to estimate relative risks associated with parity, age at first full-term pregnancy, breastfeeding, nausea or vomiting during pregnancy, and preeclampsia. Results Compared with never-pregnant women, an increasing number of full-term pregnancies was associated with greater risk reduction for both breast CIS and invasive breast cancer (both P trend < 0.01). Women having four or more full-term pregnancies had a 31% lower breast CIS risk (RR = 0.69, 95% CI = 0.51 to 0.93) and 18% lower invasive breast cancer risk (RR = 0.82, 95% CI = 0.72 to 0.94). Parous women whose first full-term pregnancy occurred at age 35 years or later had a 118% greater risk for breast CIS (RR = 2.18, 95% CI = 1.36 to 3.49) and 27% greater risk for invasive breast cancer (RR = 1.27, 95% CI = 0.99 to 1.65) than those whose first full-term pregnancy occurred before age 21 years. Furthermore, parity was negatively associated with the risk of estrogen receptor-positive (ER+) or ER+/progesterone receptor-positive (PR+) while age at first full-term pregnancy was positively associated with the risk of ER+ or ER+/PR+ invasive breast cancer. Neither of these factors was statistically significantly associated with the risk of ER-negative (ER-) or ER-/PR- invasive breast cancer, tests for heterogeneity between subtypes did not reach statistical significance. No clear associations were detected for other pregnancy-related factors. Conclusions These results provide some epidemiologic evidence that parity and age at first full-term pregnancy are involved in the development of breast cancer among postmenopausal women. The role of these factors in risk of in situ versus invasive, and hormone receptor-positive versus -negative breast cancer merits further exploration

    Pcaf modulates polyglutamine pathology in a Drosophila model of Huntington's disease.

    No full text
    Huntingtin peptides with elongated polyglutamine domains, the root causes of Huntington's disease, hinder histone acetylation, which leads to transcriptional dysregulation. However, the range of acetyltransferases interacting with mutant Huntingtin has not been systematically evaluated. We used genetic interaction tests in Drosophila to determine whether specific acetyltransferases belonging to distinct protein families influence polyglutamine pathology. We found that flies expressing a mutant form of the Huntingtin protein (Httex1pQ93) exhibit reduced viability, which is further decreased by partial loss of Pcaf or nejire, while the tested MYST family acetyltransferases did not affect pathology. Reduced levels of Pcaf also led to the increased degeneration of photoreceptor neurons in the retina. Overexpression of Pcaf, however, was not sufficient to ameliorate these phenotypes, and the level of soluble Pcaf is unchanged in Httex1pQ93-expressing flies. Thus, our results indicate that while Pcaf has a significant impact on Huntington's disease pathology, therapeutic strategies aimed at elevating its levels are likely to be ineffective in ameliorating Huntington's disease pathology; however, strategies that aim to increase the specific activity of Pcaf remain to be tested

    Biologically active molecules that reduce polyglutamine aggregation and toxicity.

    No full text
    Polyglutamine expansion in certain proteins causes neurodegeneration in inherited disorders such as Huntington disease and X-linked spinobulbar muscular atrophy. Polyglutamine tracts promote protein aggregation in vitro and in vivo with a strict length-dependence that strongly implicates alternative protein folding and/or aggregation as a proximal cause of cellular toxicity and neurodegeneration. We used an intracellular polyglutamine protein aggregation assay based on fluorescence resonance energy transfer (FRET) to identify inhibitors of androgen receptor (AR) aggregation in three libraries of biologically active small molecules: the Annotated Compound Library, the NINDS Custom Collection and a kinase inhibitor collection. In the primary screen 10 compounds reduced AR aggregation. While 10/10 also reduced huntingtin (Htt) exon 1 aggregation, only 2/10 reduced aggregation of pure polyglutamine peptides. In a PC-12 model 9/10 compounds reduced aggregation. Five out of nine compounds tested in an Htt exon 1 assay of neurodegeneration in Drosophila partially rescued the phenotype. Three of the five compounds effective in flies are FDA-approved drugs. These compounds provide new leads for therapeutic development for the polyglutamine diseases based on their efficacy in mammalian cells and a Drosophila model. The high predictive value of the primary screen suggests that the FRET-based screening assay may be useful for further primary and secondary screens for genes or small molecules that inhibit polyglutamine protein aggregation

    Article Serines 13 and 16 Are Critical Determinants of Full-Length Human Mutant Huntingtin Induced Disease Pathogenesis in HD Mice

    No full text
    SUMMARY The N-terminal 17 amino acids of huntingtin (NT17) can be phosphorylated on serines 13 and 16; however, the significance of these modifications in Huntington's disease pathogenesis remains unknown. In this study, we developed BAC transgenic mice expressing full-length mutant huntingtin (fl-mhtt) with serines 13 and 16 mutated to either aspartate (phosphomimetic or SD) or alanine (phosphoresistant or SA). Both mutant proteins preserve the essential function of huntingtin in rescuing knockout mouse phenotypes. However, fl-mhttinduced disease pathogenesis, including motor and psychiatric-like behavioral deficits, mhtt aggregation, and selective neurodegeneration are abolished in SD but preserved in SA mice. Moreover, modification of these serines in expanded repeat huntingtin peptides modulates aggregation and amyloid fibril formation in vitro. Together, our findings demonstrate that serines 13 and 16 are critical determinants of fl-mhtt-induced disease pathogenesis in vivo, supporting the targeting of huntingtin NT17 domain and its modifications in HD therapy
    corecore