164 research outputs found

    Gravitational radiation from a bulk flow model

    Full text link
    We perform simulations in a simple model that aims to mimic the hydrodynamic evolution of a relativistic fluid during a cosmological first-order phase transitions. The observable we are concerned with is hereby the spectrum of gravitational radiation produced by colliding fluid shells. We present simple parameterizations of our results as functions of the wall velocity, the duration of the phase transition and the latent heat. We also improve on previous results in the envelope approximation and compare with hydrodynamic simulations.Comment: 19 pages, 7 figures, matches published versio

    Resummation of Goldstone Infrared Divergences: A Proof to All Orders

    Full text link
    The perturbative effective potential calculated in Landau gauge suffers from infrared problems due to Goldstone boson loops. These divergences are spurious and can be removed by a resummation procedure that amounts to a shift of the mass of soft Goldstones. We prove this to all loops using an effective theory approach, providing a compact recipe for the shift of the Goldstone mass that relies on the use of the method of regions to split soft and hard Goldstone contributions.Comment: 30 pages, 3 figure

    CP-violation for Electroweak Baryogenesis from Dynamical CKM Matrix

    Full text link
    We show that the CKM matrix can be the source of CP violation for electroweak baryogenesis if Yukawa couplings vary at the same time as the Higgs acquires its vacuum expectation value. This offers new avenues for explaining the baryon asymmetry of the universe. These ideas apply if the mechanism explaining the flavour structure of the Standard Model is connected to electroweak symmetry breaking. We compute the resulting baryon asymmetry for various low-scale flavour models and different configurations of the Yukawa coupling variation across the bubble wall, and show that it can naturally be of the right order.Comment: 43 pages, 17 figures; v2: replaced mismatched plot in Figure 8 and corrected a typo in the caption; v3: JCAP published version, clarifications added, results unchange

    Cosmological perturbation theory at three-loop order

    Full text link
    We analyze the dark matter power spectrum at three-loop order in standard perturbation theory of large scale structure. We observe that at late times the loop expansion does not converge even for large scales (small momenta) well within the linear regime, but exhibits properties compatible with an asymptotic series. We propose a technique to restore the convergence in the limit of small momentum, and use it to obtain a perturbative expansion with improved convergence for momenta in the range where baryonic acoustic oscillations are present. Our results are compared with data from N-body simulations at different redshifts, and we find good agreement within this range.Comment: 29 pages, 8 figures, 1 table; v2 Typos corrected, references added. Matches published versio

    From Boltzmann equations to steady wall velocities

    Full text link
    By means of a relativistic microscopic approach we calculate the expansion velocity of bubbles generated during a first-order electroweak phase transition. In particular, we use the gradient expansion of the Kadanoff-Baym equations to set up the fluid system. This turns out to be equivalent to the one found in the semi-classical approach in the non-relativistic limit. Finally, by including hydrodynamic deflagration effects and solving the Higgs equations of motion in the fluid, we determine velocity and thickness of the bubble walls. Our findings are compared with phenomenological models of wall velocities. As illustrative examples, we apply these results to three theories providing first-order phase transitions with a particle content in the thermal plasma that resembles the Standard Model.Comment: 40 pages, 8 figures; v2: added references, version published in JCA

    Hybrid Inflation Exit through Tunneling

    Full text link
    For hybrid inflationary potentials, we derive the tunneling rate from field configurations along the flat direction towards the waterfall regime. This process competes with the classically rolling evolution of the scalar fields and needs to be strongly subdominant for phenomenologically viable models. Tunneling may exclude models with a mass scale below 10^12 GeV, but can be suppressed by small values of the coupling constants. We find that tunneling is negligible for those models, which do not require fine tuning in order to cancel radiative corrections, in particular for GUT-scale SUSY inflation. In contrast, electroweak scale hybrid inflation is not viable, unless the inflaton-waterfall field coupling is smaller than approximately 10^-11.Comment: 17 pages, 2 figure

    Gauge-Independent Scales Related to the Standard Model Vacuum Instability

    Full text link
    The measured (central) values of the Higgs and top quark masses indicate that the Standard Model (SM) effective potential develops an instability at high field values. The scale of this instability, determined as the Higgs field value at which the potential drops below the electroweak minimum, is about 101110^{11} GeV. However, such a scale is unphysical as it is not gauge-invariant and suffers from a gauge-fixing uncertainty of up to two orders of magnitude. Subjecting our system, the SM, to several probes of the instability (adding higher order operators to the potential; letting the vacuum decay through critical bubbles; heating up the system to very high temperature; inflating it) and asking in each case physical questions, we are able to provide several gauge-invariant scales related with the Higgs potential instability.Comment: 44 pages, 9 figure

    On the Soft Limit of the Large Scale Structure Power Spectrum: UV Dependence

    Full text link
    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an `anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a 10%\sim 10 \% effect, and plausibly smaller.Comment: 25+5 pages, 10 figures, comments added, matches published versio

    Quantum Corrections to the Reissner-Nordstr\"{o}m and Kerr-Newman Metrics

    Get PDF
    We use effective field theory techniques to examine the quantum corrections to the gravitational metrics of charged particles, with and without spin. In momentum space the masslessness of the photon implies the presence of nonanalytic pieces q2,q2logq2\sim \sqrt{-q^2},q^2\log -q^2 etc. in the form factors of the energy-momentum tensor. We show how the former reproduces the classical non-linear terms of the Reissner-Nordstr\"{o}m and Kerr-Newman metrics while the latter can be interpreted as quantum corrections to these metrics, of order Gα/mr3G\alpha\hbar/mr^3Comment: 16 page latex file with two figure