77 research outputs found

    p35, the non-cyclin activator of Cdk5, protects podocytes against apoptosis in vitro and in vivo

    Get PDF
    Cyclin-dependent kinase-5 is widely expressed and predominantly regulated by the non-cyclin activator p35. Since we recently showed that expression of p35 in the kidney is restricted to podocytes, we examined here its function in mice in which p35 was genetically deleted. The mice did not exhibit kidney abnormalities during glomerular development or during adult life. Conditionally immortalized cultured podocytes, derived from these null mice, did not have any change in their morphology, differentiation, or proliferation. However, when these cultured podocytes were exposed to UV-C irradiation, serum depletion, puromycin aminonucleoside, or transforming growth factor-ÎČ-1, they showed increased apoptosis compared to those from wild-type mice. Levels of Bcl-2 were decreased in these null podocytes but increased after transduction with human p35. Restoration of p35 or the ectopic expression of Bcl-2 reduced the susceptibility of p35-null podocytes to apoptosis. Experimental glomerulonephritis, characterized by podocyte apoptosis and subsequent crescent formation, was utilized to test these findings in vivo. Podocyte apoptosis was significantly increased in diseased p35-null compared with wild-type mice, accompanied by increased glomerulosclerosis and decreased renal function. Our study shows that p35 does not affect glomerulogenesis but controls podocyte survival following injury, in part, by regulating Bcl-2 expression

    Strain-induced kinetics of intergrain defects as the mechanism of slow dynamics in the nonlinear resonant response of humid sandstone bars

    Full text link
    A closed-form description is proposed to explain nonlinear and slow dynamics effects exhibited by sandstone bars in longitudinal resonance experiments. Along with the fast subsystem of longitudinal nonlinear displacements we examine the strain-dependent slow subsystem of broken intergrain and interlamina cohesive bonds. We show that even the simplest but phenomenologically correct modelling of their mutual feedback elucidates the main experimental findings typical for forced longitudinal oscillations of sandstone bars, namely, (i) hysteretic behavior of a resonance curve on both its up- and down-slopes, (ii) linear softening of resonant frequency with increase of driving level, and (iii) gradual recovery (increase) of resonant frequency at low dynamical strains after the sample was conditioned by high strains. In order to reproduce the highly nonlinear elastic features of sandstone grained structure a realistic non-perturbative form of strain potential energy was adopted. In our theory slow dynamics associated with the experimentally observed memory of peak strain history is attributed to strain-induced kinetic changes in concentration of ruptured inter-grain and inter-lamina cohesive bonds causing a net hysteretic effect on the elastic Young's modulus. Finally, we explain how enhancement of hysteretic phenomena originates from an increase in equilibrium concentration of ruptured cohesive bonds that are due to water saturation.Comment: 5 pages, 3 figure

    Tears evoke the intention to offer social support: A systematic investigation of the interpersonal effects of emotional crying across 41 countries

    Get PDF
    Tearful crying is a ubiquitous and likely uniquely human phenomenon. Scholars have argued that emotional tears serve an attachment function: Tears are thought to act as a social glue by evoking social support intentions. Initial experimental studies supported this proposition across several methodologies, but these were conducted almost exclusively on participants from North America and Europe, resulting in limited generalizability. This project examined the tears-social support intentions effect and possible mediating and moderating variables in a fully pre-registered study across 7007 participants (24,886 ratings) and 41 countries spanning all populated continents. Participants were presented with four pictures out of 100 possible targets with or without digitally-added tears. We confirmed the main prediction that seeing a tearful individual elicits the intention to support, d = 0.49 [0.43, 0.55]. Our data suggest that this effect could be mediated by perceiving the crying target as warmer and more helpless, feeling more connected, as well as feeling more empathic concern for the crier, but not by an increase in personal distress of the observer. The effect was moderated by the situational valence, identifying the target as part of one's group, and trait empathic concern. A neutral situation, high trait empathic concern, and low identification increased the effect. We observed high heterogeneity across countries that was, via split-half validation, best explained by country-level GDP per capita and subjective well-being with stronger effects for higher-scoring countries. These findings suggest that tears can function as social glue, providing one possible explanation why emotional crying persists into adulthood.</p

    TenCate, “Soft-ratchet modeling of slow dynamics in the nonlinear resonant response of sedimentary rocks”, in this Proceedings. Downloaded 02 Oct 2006 to 128.165.206.18. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/pr

    No full text
    Abstract. We propose a closed-form scheme that reproduces a wide class of nonlinear and hysteretic effects exhibited by sedimentary rocks in longitudinal bar resonance. In particular, we correctly describe: hysteretic behavior of a resonance curve on both its upward and downward slopes; linear softening of resonant frequency with increase of driving level; gradual (almost logarithmic) recovery (increase) of resonance frequency after large dynamical strains; and temporal relaxation of response amplitude at fixed frequency. Further, we are able to describe how water saturation enhances hysteresis and simultaneously decreases quality factor. The basic ingredients of the original bar system are assumed to be two coupled subsystems, namely, an elastic subsystem sensitive to the concentration of intergrain defects, and a kinetic subsystem of intergrain defects supporting an asymmetric response to an alternating internal stress

    Cyclin I and p35 determine the subcellular distribution of Cdk5

    No full text
    The atypical cyclin-dependent kinase 5 (Cdk5) serves an array of different functions in cell biology. Among these are axonal guidance, regulation of intercellular contacts, cell differentiation, and prosurvival signaling. The variance of these functions suggests that Cdk5 activation comes to pass in different cellular compartments. The kinase activity, half-life, and substrate specificity of Cdk5 largely depend on specific activators, such as p25, p35, p39, and cyclin I. We hypothesized that the subcellular distribution of Cdk5 activators also determines the localization of the Cdk5 protein and sets the stage for targeted kinase activity within distinct cellular compartments to suit the varying roles of Cdk5. Cdk5 localization was analyzed in murine kidney and brain slices of wild-type and cyclin I- and/or p35-null mice by immunohistochemistry and in cultured mouse podocytes using immunofluorescence labeling, as well as cell fractionation experiments. The predominance of cyclin I mediates the nuclear localization of Cdk5, whereas the predominance of p35 results in a membranous localization of Cdk5. These findings were further substantiated by overexpression of cyclin I and p35 with altered targeting characteristics in human embryonic kidney 293T cells. These studies reveal that the subcellular localization of Cdk5 is determined by its specific activators. This results in the directed Cdk5 kinase activity in specific cellular compartments dependent on the activator present and allows Cdk5 to serve multiple independent roles
    • 

    corecore