176 research outputs found

    New Perspectives on Rodent Models of Advanced Paternal Age: Relevance to Autism

    Get PDF
    Offspring of older fathers have an increased risk of various adverse health outcomes, including autism and schizophrenia. With respect to biological mechanisms for this association, there are many more germline cell divisions in the life history of a sperm relative to that of an oocyte. This leads to more opportunities for copy error mutations in germ cells from older fathers. Evidence also suggests that epigenetic patterning in the sperm from older men is altered. Rodent models provide an experimental platform to examine the association between paternal age and brain development. Several rodent models of advanced paternal age (APA) have been published with relevance to intermediate phenotypes related to autism. All four published APA models vary in key features creating a lack of consistency with respect to behavioral phenotypes. A consideration of common phenotypes that emerge from these APA-related mouse models may be informative in the exploration of the molecular and neurobiological correlates of APA

    Cognitive performance and response inhibition in developmentally vitamin D (DVD)-deficient rats

    Get PDF
    Evidence from epidemiological studies suggest that low levels of vitamin D during early life alter brain development and may increase the risk of various adverse health outcomes, including schizophrenia. The aim of this experiment was to examine the effect of developmental vitamin D (DVD) deficiency on attentional processing using the 5-choice serial reaction time task (5C-SRT) and the 5-choice continuous performance test (5C-CPT), which specifically assesses sustained attention and vigilance in rodents. DVD-deficient and control rats were exposed to a series of target and non-target trials within each operant testing session. A number of measures were recorded including hit, miss, false alarm and correct rejection, as well as premature and perseverative responses. Performance on 5C-CPT was also assessed after administration of the atypical antipsychotic, clozapine. The adult offspring of DVD-deficient rats had higher levels of impulsivity, as demonstrated by a significant increase in premature responses. On the 5C-SRT and target trials of the 5C-CPT, accuracy was not significantly affected by prenatal diet; however DVD-deficient rats made 50% fewer correct rejections compared to controls on non-target trials of the 5C-CPT. Thus, control rats were able to discriminate between target and non-target trials, whereas DVD-deficient rats were unable to make this discrimination. Clozapine reduced the occurrence of false alarms in DVD-deficient rats to a level comparable to control values. Taken together these data suggest DVD-deficient rats have increased impulsivity as well as a lack of inhibitory control, and these features may be informative in terms of modeling the cognitive deficits observed in schizophrenia

    The neurodevelopmental hypothesis of schizophrenia: Convergent clues from epidemiology and neuropathology

    Get PDF
    The neurodevelopmental hypothesis of schizophrenia suggests that the disruption of early brain development increases the risk of later developing schizophrenia. This hypothesis focuses attention on critical periods of early brain development. From an epidemiologic perspective, various prenatal and perinatal risk factors have been linked to schizophrenia, including exposures related to infection, nutrition, and obstetric complications. From a genetic perspective, candidate genes have also been linked to altered brain development. In recent decades evidence from neuropathology has provided support for the neurodevelopmental hypothesis. Animal models involving early life exposures have been linked to changes in these same brain systems, providing convergent evidence for this long-standing hypothesis

    Vitamin D and the brain: key questions for future research

    Get PDF
    Over the last decade a convergent body of evidence has emerged from epidemiology, animal experiments and clinical trials which links low vitamin D status with a range of adverse neuropsychiatric outcomes. This research demonstrates that the timing of exposure to low vitamin D influences the nature of brain phenotypes, as exposures during gestation versus adulthood result in different phenotypes. With respect to early life exposures, there is robust evidence from rodent experiments indicating that transient developmental vitamin D (DVD) deficiency is associated with changes in brain structure, neurochemistry, gene and protein expression and behavior. In particular, DVD deficiency is associated with alterations in the dopaminergic neurotransmitter systems. In contrast, recently published animal experiments indicate that adult vitamin D (AVD) deficiency is associated with more subtle neurochemical and behavioral phenotypes. This paper explores key issues that need to be addressed in future research. There is a need to define the timing and duration of the ‘critical window’ during which low vitamin D status is associated with differential and adverse brain outcomes. We discuss the role for ‘two-hit hypotheses’, which propose that adult vitamin D deficiency leaves the brain more vulnerable to secondary adverse exposures, and thus may exacerbate disease progression. Finally, we explore the evidence implicating a role for vitamin D in rapid, non-genomic mechanisms that may involve L-type calcium channels and brain functio

    Adult vitamin D deficiency leads to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice

    Get PDF
    Epidemiological evidence suggests that low levels of vitamin D may predispose people to develop depression and cognitive impairment. While rodent studies have demonstrated that prenatal vitamin D deficiency is associated with altered brain development, there is a lack of research examining adult vitamin D (AVD) deficiency. The aim of this study was to examine the impact of AVD deficiency on behaviour and brain function in the mouse. Ten-week old male C57BL/6J and BALB/c mice were fed a control or vitamin D deficient diet for 10 weeks prior to, and during behavioural testing. We assessed a broad range of behavioural domains, excitatory and inhibitory neurotransmission in brain tissue, and, in separate groups of mice, locomotor response to d-amphetamine and MK-801. Overall, AVD deficiency resulted in hyperlocomotion in a novel open field and reduced GAD65/67 levels in brain tissue. AVD-deficient BALB/c mice had altered behaviour on the elevated plus maze, altered responses to heat, sound and shock, and decreased levels of glutamate and glutamine, and increased levels of GABA and glycine. By contrast C57BL/6J mice had a more subtle phenotype with no further behavioural changes but significant elevations in serine, homovanillic acid and 5-hydroxyindoleacetic acid. Although the behavioural phenotype of AVD did not seem to model a specific disorder, the overall reduction in GAD65/67 levels associated with AVD deficiency may be relevant to a number of neuropsychiatric conditions. This is the first study to show an association between AVD deficiency and prominent changes in behaviour and brain neurochemistry in the mouse

    Adult vitamin D deficiency exacerbates impairments caused by social stress in BALB/c and C57BL/6 mice

    Get PDF
    Vitamin D deficiency is prevalent in adults throughout the world. Epidemiological studies have shown significant associations between vitamin D deficiency and an increased risk of various neuropsychiatric and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's disease and cognitive impairment. However, studies based on observational epidemiology cannot address questions of causality; they cannot determine if vitamin D deficiency is a causal factor leading to the adverse health outcome. The main aim of this study was to determine if AVD deficiency would exacerbate the effects of a secondary exposure, in this case social stress, in BALE/c mice and in the more resilient C57BL/6 mice. Ten-week old male BALB/c and C57BL/6 mice were fed a control or vitamin D deficient diet for 10 weeks, and the mice were further separated into one of two groups for social treatment, either Separated (SEP) or Social Defeat (DEF). SEP mice were placed two per cage with a perforated Plexiglas divider, whereas the DEF mice underwent 10 days of social defeat prior to behavioural testing. We found that AVD-deficient mice were more vulnerable to the effects of social stress using a social avoidance test, and this was dependent on strain. These results support the hypothesis that vitamin D deficiency may exacerbate behavioural outcomes in mice vulnerable to stress, a finding that can help guide future studies. Importantly, these discoveries support the epidemiological link between vitamin D deficiency and neuropsychiatric and neurodegenerative disorders; and has provided clues that can guide future studies related to unravelling the mechanisms of action linking adult vitamin D deficiency and adverse brain related outcomes

    A morphology independent approach for identifying dividing adult neural stem cells in the mouse hippocampus

    Get PDF
    Background: Type 1 adult hippocampal neural stem cells (AH-NSCs) continue to generate neurons throughout life, albeit at a very low rate. The relative quiescence of this population of cells has led to many studies investigating factors that may increase their division. Current methods of identifying dividing AH-NSCs in vivo require the identification and tracing of radial processes back to nuclei within the subgranular zone. However, caveats to this approach include the time-intensive nature of identifying AH-NSCs with such a process, as well as the fact that this approach ignores the relatively more active population of horizontally oriented AH-NSCs that also reside in the subgranular zone. Results: Here we describe, and then verify using Hes5::GFP mice, that labeling for the cell cycle marker Ki67 and selection against the intermediate progenitor cell marker TBR2 (Ki67; TBR2 nuclei) is sufficient to identify dividing horizontally and radially oriented AH-NSCs in the adult mouse hippocampus. Conclusions: These findings provide a simple and accurate way to quantify dividing AH-NSCs in vivo using a morphology-independent approach that will facilitate studies into neurogenesis within the hippocampal stem cell niche of the adult brain. Developmental Dynamics 247:194–200, 2018

    Attentional Processing in C57BL/6J Mice Exposed to Developmental Vitamin D Deficiency

    Get PDF
    Epidemiological evidence suggests that Developmental Vitamin D (DVD) deficiency is associated with an increased risk of schizophrenia. DVD deficiency in mice is associated with altered behaviour, however there has been no detailed investigation of cognitive behaviours in DVD-deficient mice. The aim of this study was to determine the effect of DVD deficiency on a range of cognitive tasks assessing attentional processing in C57BL/6J mice. DVD deficiency was established by feeding female C57BL/6J mice a vitamin D-deficient diet from four weeks of age. After six weeks on the diet, vitamin D-deficient and control females were mated with vitamin D-normal males and upon birth of the pups, all dams were returned to a diet containing vitamin D. The adult offspring were tested on a range of cognitive behavioural tests, including the five-choice serial reaction task (5C-SRT) and five-choice continuous performance test (5C-CPT), as well as latent inhibition using a fear conditioning paradigm. DVD deficiency was not associated with altered attentional performance on the 5C-SRT. In the 5C-CPT DVD-deficient male mice exhibited an impairment in inhibiting repetitive responses by making more perseverative responses, with no changes in premature or false alarm responding. DVD deficiency did not affect the acquisition or retention of cued fear conditioning, nor did it affect the expression of latent inhibition using a fear conditioning paradigm. DVD-deficient mice exhibited no major impairments in any of the cognitive domains tested. However, impairments in perseverative responding in DVD-deficient mice may indicate that these animals have specific alterations in systems governing compulsive or reward-seeking behaviour

    Memory consolidation in the cerebellar cortex

    Get PDF
    Several forms of learning, including classical conditioning of the eyeblink, depend upon the cerebellum. In examining mechanisms of eyeblink conditioning in rabbits, reversible inactivations of the control circuitry have begun to dissociate aspects of cerebellar cortical and nuclear function in memory consolidation. It was previously shown that post-training cerebellar cortical, but not nuclear, inactivations with the GABA(A) agonist muscimol prevented consolidation but these findings left open the question as to how final memory storage was partitioned across cortical and nuclear levels. Memory consolidation might be essentially cortical and directly disturbed by actions of the muscimol, or it might be nuclear, and sensitive to the raised excitability of the nuclear neurons following the loss of cortical inhibition. To resolve this question, we simultaneously inactivated cerebellar cortical lobule HVI and the anterior interpositus nucleus of rabbits during the post-training period, so protecting the nuclei from disinhibitory effects of cortical inactivation. Consolidation was impaired by these simultaneous inactivations. Because direct application of muscimol to the nuclei alone has no impact upon consolidation, we can conclude that post-training, consolidation processes and memory storage for eyeblink conditioning have critical cerebellar cortical components. The findings are consistent with a recent model that suggests the distribution of learning-related plasticity across cortical and nuclear levels is task-dependent. There can be transfer to nuclear or brainstem levels for control of high-frequency responses but learning with lower frequency response components, such as in eyeblink conditioning, remains mainly dependent upon cortical memory storage

    Gestational Vitamin D deficiency and autism-related traits: The Generation R Study

    Get PDF
    There is intense interest in identifying modifiable risk factors associated with autism-spectrum disorders (ASD). Autism-related traits, which can be assessed in a continuous fashion, share risk factors with ASD, and thus can serve as informative phenotypes in population-based cohort studies. Based on the growing body of research linking gestational Vitamin D deficiency with altered brain development, this common exposure is a candidate modifiable risk factor for ASD and autism-related traits. The association between gestational Vitamin D deficiency and a continuous measure of autism-related traits at ∼6 years (Social Responsiveness Scale; SRS) was determined in a large population-based cohort of mothers and their children (n=4229). 25-hydroxyVitamin D (25OHD) was assessed from maternal mid-gestation sera and from neonatal sera (collected from cord blood). Vitamin D deficiency was defined as 25OHD concentrations less than 25 nmol l-1. Compared with the 25OHD sufficient group (25OHD>50 nmol l-1), those who were 25OHD deficient had significantly higher (more abnormal) SRS scores (mid-gestation n=2866, β=0.06, P<0.001; cord blood n=1712, β=0.03, P=0.01). The findings persisted (a) when we restricted the models to offspring with European ancestry, (b) when we adjusted for sample structure using genetic data, (c) when 25OHD was entered as a continuous measure in the models and (d) when we corrected for the effect of season of blood sampling. Gestational Vitamin D deficiency was associated with autism-related traits in a large population-based sample. Because gestational Vitamin D deficiency is readily preventable with safe, cheap and accessible supplements, this candidate risk factor warrants closer scrutiny
    corecore