89 research outputs found
Layered Uranyl Coordination Polymers Rigidly Pillared by Diphosphonates
The hydrothermal reaction of uranyl nitrate and 1,4-benzenebisphosphonic
acid in the presence of monovalent and divalent metal hydroxides results
in the formation of four new uranyl coordination polymers: Ag<sub>2</sub>{(UO<sub>2</sub>)Â[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>H)<sub>2</sub>]<sub>2</sub>} <b>(AgUbbp)</b>, CsÂ{(UO<sub>2</sub>)Â[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>H<sub>0.5</sub>)<sub>2</sub>]} <b>(CsUbbp)</b>, [BaÂ(H<sub>2</sub>O)<sub>3</sub>]Â{(UO<sub>2</sub>)<sub>3</sub>[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>)<sub>2</sub>]<sub>2</sub>(O)}·5Â(H<sub>2</sub>O) (<b>BaUbbp</b>), and [SrÂ(H<sub>2</sub>O)<sub>3</sub>]Â{(UO<sub>2</sub>)<sub>2</sub>[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>)<sub>2</sub>]Â(OH)<sub>2</sub>(H<sub>2</sub>O)}·3Â(H<sub>2</sub>O) (<b>SrUbbp</b>). <b>AgUbbp</b> and <b>CsUbbp</b> complexes are constructed
from UO<sub>6</sub> units with tetragonal bipyramidal coordination
geometries, whereas <b>BaUbbp</b> and <b>SrUbbp</b> complexes
contain UO<sub>7</sub> units with pentagonal bipyramidal coordination
environments. The pH and the monovalent/divalent metal cations have
significant effects on the topology of these structures. These compounds
fluoresce at room temperature owing to emission from the uranyl units
Layered Uranyl Coordination Polymers Rigidly Pillared by Diphosphonates
The hydrothermal reaction of uranyl nitrate and 1,4-benzenebisphosphonic
acid in the presence of monovalent and divalent metal hydroxides results
in the formation of four new uranyl coordination polymers: Ag<sub>2</sub>{(UO<sub>2</sub>)Â[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>H)<sub>2</sub>]<sub>2</sub>} <b>(AgUbbp)</b>, CsÂ{(UO<sub>2</sub>)Â[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>H<sub>0.5</sub>)<sub>2</sub>]} <b>(CsUbbp)</b>, [BaÂ(H<sub>2</sub>O)<sub>3</sub>]Â{(UO<sub>2</sub>)<sub>3</sub>[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>)<sub>2</sub>]<sub>2</sub>(O)}·5Â(H<sub>2</sub>O) (<b>BaUbbp</b>), and [SrÂ(H<sub>2</sub>O)<sub>3</sub>]Â{(UO<sub>2</sub>)<sub>2</sub>[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>)<sub>2</sub>]Â(OH)<sub>2</sub>(H<sub>2</sub>O)}·3Â(H<sub>2</sub>O) (<b>SrUbbp</b>). <b>AgUbbp</b> and <b>CsUbbp</b> complexes are constructed
from UO<sub>6</sub> units with tetragonal bipyramidal coordination
geometries, whereas <b>BaUbbp</b> and <b>SrUbbp</b> complexes
contain UO<sub>7</sub> units with pentagonal bipyramidal coordination
environments. The pH and the monovalent/divalent metal cations have
significant effects on the topology of these structures. These compounds
fluoresce at room temperature owing to emission from the uranyl units
Periodic Trends in Hexanuclear Actinide Clusters
Four new ThÂ(IV), UÂ(IV), and NpÂ(IV) hexanuclear clusters
with 1,2-phenylenediphosphonate as the bridging ligand have been prepared
by self-assembly at room temperature. The structures of Th<sub>6</sub>Tl<sub>3</sub>[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>)Â(PO<sub>3</sub>H)]<sub>6</sub>(NO<sub>3</sub>)<sub>7</sub>(H<sub>2</sub>O)<sub>6</sub>·(NO<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O (<b>Th6-3</b>), (NH<sub>4</sub>)<sub>8.11</sub>ÂNp<sub>12</sub>Rb<sub>3.89</sub>[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>)Â(PO<sub>3</sub>H)]<sub>12</sub>(NO<sub>3</sub>)<sub>24</sub>·15H<sub>2</sub>O (<b>Np6-1</b>), (NH<sub>4</sub>)<sub>4</sub>U<sub>12</sub>Cs<sub>8</sub>[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>)Â(PO<sub>3</sub>H)]<sub>12</sub>(NO<sub>3</sub>)<sub>24</sub>·18H<sub>2</sub>O (<b>U6-1</b>), and (NH<sub>4</sub>)<sub>4</sub>ÂU<sub>12</sub>Cs<sub>2</sub>Â[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>)Â(PO<sub>3</sub>H)]<sub>12</sub>(NO<sub>3</sub>)<sub>18</sub>·40H<sub>2</sub>O (<b>U6-2</b>) are described and compared with other
clusters of containing AnÂ(IV) or CeÂ(IV). All of the clusters share
the common formula M<sub>6</sub>(H<sub>2</sub>O)<sub><i>m</i></sub>[C<sub>6</sub>H<sub>3</sub>(PO<sub>3</sub>)Â(PO<sub>3</sub>H)]<sub>6</sub>(NO<sub>3</sub>)<sub><i>n</i></sub><sup>(6–<i>n</i>)</sup> (M = Ce, Th, U, Np, Pu). The metal centers are
normally nine-coordinate, with five oxygen atoms from the ligand and
an additional four either occupied by NO<sub>3</sub><sup>–</sup> or H<sub>2</sub>O. It was found that the Ce, U, and Pu clusters
favor both <i>C</i><sub>3<i>i</i></sub> and <i>C</i><sub><i>i</i></sub> point groups, while Th only
yields in <i>C</i><sub><i>i</i></sub>, and Np
only <i>C</i><sub>3<i>i</i></sub>. In the <i>C</i><sub>3<i>i</i></sub> clusters, there are two
NO<sub>3</sub><sup>–</sup> anions bonded to the metal centers.
In the <i>C</i><sub><i>i</i></sub> clusters, the
number of NO<sub>3</sub><sup>–</sup> anions varies from 0 to
2. The change in the ionic radius of the actinide ions tunes the cavity
size of the clusters. The thorium clusters were found to accept larger
ions including Cs<sup>+</sup> and Tl<sup>+</sup>, whereas with uranium
and later elements, only NH<sub>4</sub><sup>+</sup> and/or Rb<sup>+</sup> reside in the center of the clusters
Periodic Trends in Hexanuclear Actinide Clusters
Four new ThÂ(IV), UÂ(IV), and NpÂ(IV) hexanuclear clusters
with 1,2-phenylenediphosphonate as the bridging ligand have been prepared
by self-assembly at room temperature. The structures of Th<sub>6</sub>Tl<sub>3</sub>[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>)Â(PO<sub>3</sub>H)]<sub>6</sub>(NO<sub>3</sub>)<sub>7</sub>(H<sub>2</sub>O)<sub>6</sub>·(NO<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O (<b>Th6-3</b>), (NH<sub>4</sub>)<sub>8.11</sub>ÂNp<sub>12</sub>Rb<sub>3.89</sub>[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>)Â(PO<sub>3</sub>H)]<sub>12</sub>(NO<sub>3</sub>)<sub>24</sub>·15H<sub>2</sub>O (<b>Np6-1</b>), (NH<sub>4</sub>)<sub>4</sub>U<sub>12</sub>Cs<sub>8</sub>[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>)Â(PO<sub>3</sub>H)]<sub>12</sub>(NO<sub>3</sub>)<sub>24</sub>·18H<sub>2</sub>O (<b>U6-1</b>), and (NH<sub>4</sub>)<sub>4</sub>ÂU<sub>12</sub>Cs<sub>2</sub>Â[C<sub>6</sub>H<sub>4</sub>(PO<sub>3</sub>)Â(PO<sub>3</sub>H)]<sub>12</sub>(NO<sub>3</sub>)<sub>18</sub>·40H<sub>2</sub>O (<b>U6-2</b>) are described and compared with other
clusters of containing AnÂ(IV) or CeÂ(IV). All of the clusters share
the common formula M<sub>6</sub>(H<sub>2</sub>O)<sub><i>m</i></sub>[C<sub>6</sub>H<sub>3</sub>(PO<sub>3</sub>)Â(PO<sub>3</sub>H)]<sub>6</sub>(NO<sub>3</sub>)<sub><i>n</i></sub><sup>(6–<i>n</i>)</sup> (M = Ce, Th, U, Np, Pu). The metal centers are
normally nine-coordinate, with five oxygen atoms from the ligand and
an additional four either occupied by NO<sub>3</sub><sup>–</sup> or H<sub>2</sub>O. It was found that the Ce, U, and Pu clusters
favor both <i>C</i><sub>3<i>i</i></sub> and <i>C</i><sub><i>i</i></sub> point groups, while Th only
yields in <i>C</i><sub><i>i</i></sub>, and Np
only <i>C</i><sub>3<i>i</i></sub>. In the <i>C</i><sub>3<i>i</i></sub> clusters, there are two
NO<sub>3</sub><sup>–</sup> anions bonded to the metal centers.
In the <i>C</i><sub><i>i</i></sub> clusters, the
number of NO<sub>3</sub><sup>–</sup> anions varies from 0 to
2. The change in the ionic radius of the actinide ions tunes the cavity
size of the clusters. The thorium clusters were found to accept larger
ions including Cs<sup>+</sup> and Tl<sup>+</sup>, whereas with uranium
and later elements, only NH<sub>4</sub><sup>+</sup> and/or Rb<sup>+</sup> reside in the center of the clusters
A<sub>6</sub>U<sub>3</sub>Sb<sub>2</sub>P<sub>8</sub>S<sub>32</sub> (A = Rb, Cs): Quinary Uranium(IV) Thiophosphates Containing the [Sb(PS<sub>4</sub>)<sub>3</sub>]<sup>6–</sup> Anion
The
reaction of A<sub>2</sub>S<sub>3</sub>/U/P<sub>2</sub>S<sub>5</sub>/S at 500 °C affords the quinary UÂ(IV) thiophosphates A<sub>6</sub>U<sub>3</sub>Sb<sub>2</sub>P<sub>8</sub>S<sub>32</sub> (A
= Rb, Cs). These compounds contain {U<sub>3</sub>(PS<sub>4</sub>)<sub>2</sub>[SbÂ(PS<sub>4</sub>)<sub>3</sub>]<sub>2</sub>}<sup>6–</sup> layers separated by alkali metal cations. The layers are composed
of trimeric uranium units connected to each other by the thiophosphato-antimonite
anion, [SbÂ(PS<sub>4</sub>)<sub>3</sub>]<sup>6–</sup>. This
unit contains a central SbÂ(III) cation bound by three [PS<sub>4</sub>]<sup>3–</sup> anions, creating a trigonal pyramidal environment
around SbÂ(III). Each uranium cation is surrounded by eight sulfides
in a distorted square antiprism that shares two edges with two other
US<sub>8</sub> units to form a trimeric [U<sub>3</sub>S<sub>18</sub>]<sup>24–</sup> cluster. Magnetic susceptibility measurements
indicate that the close proximity of the UÂ(IV) within these clusters
leads to antiferromagnetic ordering at 53 K. Reflectance spectroscopy
indicates that these compounds are semiconductors with a band gap
of 1.48 eV
A<sub>6</sub>U<sub>3</sub>Sb<sub>2</sub>P<sub>8</sub>S<sub>32</sub> (A = Rb, Cs): Quinary Uranium(IV) Thiophosphates Containing the [Sb(PS<sub>4</sub>)<sub>3</sub>]<sup>6–</sup> Anion
The
reaction of A<sub>2</sub>S<sub>3</sub>/U/P<sub>2</sub>S<sub>5</sub>/S at 500 °C affords the quinary UÂ(IV) thiophosphates A<sub>6</sub>U<sub>3</sub>Sb<sub>2</sub>P<sub>8</sub>S<sub>32</sub> (A
= Rb, Cs). These compounds contain {U<sub>3</sub>(PS<sub>4</sub>)<sub>2</sub>[SbÂ(PS<sub>4</sub>)<sub>3</sub>]<sub>2</sub>}<sup>6–</sup> layers separated by alkali metal cations. The layers are composed
of trimeric uranium units connected to each other by the thiophosphato-antimonite
anion, [SbÂ(PS<sub>4</sub>)<sub>3</sub>]<sup>6–</sup>. This
unit contains a central SbÂ(III) cation bound by three [PS<sub>4</sub>]<sup>3–</sup> anions, creating a trigonal pyramidal environment
around SbÂ(III). Each uranium cation is surrounded by eight sulfides
in a distorted square antiprism that shares two edges with two other
US<sub>8</sub> units to form a trimeric [U<sub>3</sub>S<sub>18</sub>]<sup>24–</sup> cluster. Magnetic susceptibility measurements
indicate that the close proximity of the UÂ(IV) within these clusters
leads to antiferromagnetic ordering at 53 K. Reflectance spectroscopy
indicates that these compounds are semiconductors with a band gap
of 1.48 eV
Synthesis, Structure, Magnetism, and Optical Properties of Cs<sub>2</sub>Cu<sub>3</sub>DyTe<sub>4</sub>
CsCu<sub>3</sub>DyTe<sub>4</sub> was prepared by reacting
copper,
dysprosium, and tellurium with cesium azide at 850 °C in a fused
silica ampule. This new telluride crystallizes in the monoclinic space
group <i>C</i>2/<i>m</i> with lattice dimensions
of <i>a</i> = 16.462(4) Ã…, <i>b</i> = 4.434(1)
Å, <i>c</i> = 8. 881(2) Å, β = 108.609(12)°
with <i>Z</i> = 2. Its crystal structure is dominated by <sub>∞</sub><sup>2</sup>{[Cu<sub>3</sub>DyTe<sub>4</sub>]}<sup>1–</sup> anionic layers separated
by Cs<sup>+</sup> cations. The copper cations are disordered over
three different tetrahedral sites. The [DyTe<sub>6</sub>]<sup>9–</sup> polyhedra form infinite <sub>∞</sub><sup>1</sup>{[DyTe<sub>4</sub>]<sup>5–</sup>} chains.
Magnetism studies conducted on this semiconductor suggest complex
magnetic interactions between the Dy<sup>3+</sup> cations with a strong
deviation from Curie-type behavior at low temperatures below 40 K
Uranyl Heteropolyoxometalate: Synthesis, Structure, and Spectroscopic Properties
A novel uranium heteropolyoxometalate, [H<sub>3</sub>O]<sub>4</sub>[NiÂ(H<sub>2</sub>O)<sub>3</sub>]<sub>4</sub>{NiÂ[(UO<sub>2</sub>)Â(PO<sub>3</sub>C<sub>6</sub>H<sub>4</sub>CO<sub>2</sub>)]<sub>3</sub>Â(PO<sub>4</sub>H)}<sub>4</sub>·2.72H<sub>2</sub>O, has been prepared
under mild hydrothermal conditions using the diethylÂ(2-ethoxycarbonylphenyl)Âphosphonate
ligand and <i>in situ</i> ligand synthesis of the HPO<sub>4</sub><sup>2–</sup> anion. The cluster is derived from a
common UO<sub>7</sub>, pentagonal bipyramid and is constructed by
employing nickelÂ(II) metal ions as linkers. The 3d–5f heteropolyoxometalate
core incorporates 12 classical pentagonal uranyl groups and four Ni<sup>2+</sup> octahedral units
Understanding the Scarcity of Thorium Peroxide Clusters
The reaction of ThÂ(NO<sub>3</sub>)<sub>4</sub>·5H<sub>2</sub>O with 3 equiv of 2,2′,6′,2″-terpyridine (terpy) in a mixture of acetonitrile and methanol results in formation of the trinuclear thorium peroxide cluster [ThÂ(O<sub>2</sub>)Â(terpy)Â(NO<sub>3</sub>)<sub>2</sub>]<sub>3</sub>. This cluster is assembled via bridging by μ–η<sup>2</sup>:η<sup>2</sup> peroxide anions between thorium centers. It decomposes upon removal from the mother liquor to yield ThÂ(terpy)Â(NO<sub>3</sub>)<sub>4</sub> and ThÂ(terpy)Â(NO<sub>3</sub>)<sub>4</sub>(EtOH). The peroxide formation appears to be radiolytic in origin and is, most likely, generated from radiolysis of water by short-lived daughters generated from <sup>232</sup>Th decay. This cluster does not form when freshly recrystallized ThÂ(NO<sub>3</sub>)<sub>4</sub>·5H<sub>2</sub>O is used as the starting material and requires an aged source of thorium. Analysis of the bonding in these clusters shows that, unlike uraniumÂ(VI) peroxide interactions, thoriumÂ(IV) complexation by peroxide is quite weak and largely ionic. This explains its much lower stability, which is more comparable to that observed in similar zirconiumÂ(IV) peroxide clusters
- …