8,358 research outputs found
Minimising biases in Full Configuration Interaction Quantum Monte Carlo
We show that Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a
Markov Chain in its present form. We construct the Markov matrix of FCIQMC for
a two determinant system and hence compute the stationary distribution. These
solutions are used to quantify the dependence of the population dynamics on the
parameters defining the Markov chain. Despite the simplicity of a system with
only two determinants, it still reveals a population control bias inherent to
the FCIQMC algorithm. We investigate the effect of simulation parameters on the
population control bias for the neon atom and suggest simulation setups to in
general minimise the bias. We show a reweighting scheme to remove the bias
caused by population control commonly used in Diffusion Monte Carlo [J. Chem.
Phys. 99, 2865 (1993)] is effective and recommend its use as a post processing
step.Comment: Supplementary material available as 'Ancillary Files
Open-source development experiences in scientific software: the HANDE quantum Monte Carlo project
The HANDE quantum Monte Carlo project offers accessible stochastic algorithms
for general use for scientists in the field of quantum chemistry. HANDE is an
ambitious and general high-performance code developed by a
geographically-dispersed team with a variety of backgrounds in computational
science. In the course of preparing a public, open-source release, we have
taken this opportunity to step back and look at what we have done and what we
hope to do in the future. We pay particular attention to development processes,
the approach taken to train students joining the project, and how a flat
hierarchical structure aids communicationComment: 6 pages. Submission to WSSSPE
Exploring the parameter space of an endohedral atom in a cylindrical cavity
Endohedral fullerenes, or endofullerenes, are chemical systems of fullerene
cages encapsulating single atoms or small molecules. These species provide an
interesting challenge of Potential Energy Surface (PES) determination as
examples of non-covalently bonded, bound systems. While the majority of studies
focus on C as the encapsulating cage, introducing some anisotropy by
using a different fullerene, e.g., C can unveil a double well potential
along the unique axis. By approximating the potential as a pairwise
Lennard-Jones (LJ) summation over the fixed C cage atoms, the parameter space
of the Hamiltonian includes three tunable variables:
representing the mass of the trapped species, the LJ energy, and length scales
respectively. Fixing the mass and allowing the others to vary can imitate the
potentials of endohedral species trapped in more elongated fullerenes. We
choose to explore the LJ parameter space of an endohedral atom in C with
[20cm, 150cm], and [2.85\r{A} ,
3.05\r{A}].
As the barrier height and positions of these wells vary between [1cm,
264cm] and [0.35\r{A}, 0.85\r{A}] respectively, using a 3D direct
product basis of 1D harmonic oscillator (HO) wavefunctions centred at the
origin where there is a local maximum is unphysical. Instead we propose the use
of a non-orthogonal basis set, using 1D HO wavefunctions centred in each
minimum and compare this to other choices. The ground state energy of the
X@C is tracked across the LJ parameter space, along with its
corresponding nuclear translational wavefunctions. A classification of the
wavefunction characteristics, namely the prolateness and ``peanut-likeness''
based on its statistical moments is also proposed.Comment: 14 pages, 14 figure
Responses to supplementation by dairy cows given low pasture allowances in different seasons 2. Milk production
Two factorial experiments were designed to determine the effects of stage of lactation, and season of the year, on cow responses to supplementary feeding. These experiments were conducted over consecutive years with 128 high genetic merit multiparous Holstein-Friesian cows in early, mid and late lactation in spring, summer, autumn and winter. At each stage of lactation, and in each season of the year, cows were offered a restricted pasture allowance (25 to 35 kg dry matter (DM) per cow per day), either unsupplemented (control) or with supplement at 50 MJ metabolizable energy (ME) per cow per day in experiment 1 and 80 MJ ME per cow per day in experiment 2. The two supplements given in both years were rolled maize grain (MG) and a mixture of foods formulated to nutritionally balance the diet (BR). In experiment 2, another treatment, of a generous pasture allowance (60 to 75 kg DM per cow per day) (AP), was imposed on an additional group of early lactation cows during each season. Direct milk solids (MS) (milk fat plus milk protein) responses in experiment 1 to MG were 169, 279, 195 and 251 g MS per cow per day in spring, summer, autumn and winter, respectively, while those to BR were 107, 250, 192, 289 g MS per cow per day. In experiment 2, however, milk solids responses to both supplements during spring were slightly below the control treatment, with values similar to those in experiment 1 in summer and autumn for cows on the BR but not the MG supplement. Milk solids responses to supplementary foods were largest during seasons of the year when the quantity and quality of pasture on offer resulted in the lowest milk solids yield from unsupplemented cows. When carry-over effects of feeding MG and BR on milk solids production were detected, they were only about half the magnitude of the direct effects. Serum urea concentrations were higher in control cows than those offered MG with a similar effect for BR in all but summer in experiment 1, while serum glucose concentrations were highest in winter and lowest in summer. The most important factor influencing milk solids responses was the relative food deficit (RFD) represented by the decline in milk solids yield of the respective control groups after,changing from a generous pasture allowance to restricted allowance when the feeding treatments were imposed. Total milk solids responses (direct and carry-over) to supplements were greatest when severe food restrictions, relative to the cows' current food demand, resulted in large reductions in milk solids yield of the control groups. The RFD was the best predictor of milk solids response to supplementary foods. Therefore, it is likely that cows are most responsive to supplementary foods during or immediately after the imposition of a severe food restriction
Responses to supplementation by dairy cows given low pasture allowances in different seasons 1. Pasture intake and substitution
Two factorial experiments were designed to determine the effects of stage of lactation, and season of the year, on cow responses to supplementary feeding. These experiments were conducted over consecutive years with 128 high genetic merit multiparous Holstein-Friesian cows in early, mid and late lactation in spring, summer, autumn and winter. At each stage of lactation, and in each season of the year, cows were offered a restricted pasture allowance (25 to 35 kg dry matter (DM) per cow per day), either unsupplemented (control) or supplemented with 50 MJ metabolizable energy (ME) per cow per day in experiment 1 and 80 MJ ME per cow per day in experiment 2. Two different supplements were offered, namely, rolled maize grain (MG) and a mixture of foods (BR) formulated to nutritionally balance the diet. In experiment 2, a fourth treatment consisting solely of a generous pasture allowance (60 to 75 kg DM per cow per day, AP) was introduced. Offering MG and BR increased DM intake (DMI). At the restricted pasture allowance, increasing total ME allowance (MEA) by offering supplementary foods increased ME intake (MEI) by 0.68 (s.e. 0.047) MJ per extra MJ ME offered. This highly significant (P < 0.001) linear relationship was consistent across seasons, and did not diminish at higher MEA. In experiment 2, cows in early lactation had lower substitution rates than mid and late lactation cows irrespective of season. Substitution rate was higher when higher pasture allowance or quality of pasture on offer enabled the unsupplemented cows to achieve higher DMI from pasture than at other times of the year. These results suggest that one of the key factors determining the intake response to supplementary foods is pasture allowance. Within spring calving dairying systems, the largest increases in total DMI per kg of supplement offered is likely when offering supplements to early lactation cows grazing restricted allowances of high quality pasture
Catastrophic regime shifts in model ecological communities are true phase transitions
Ecosystems often undergo abrupt regime shifts in response to gradual external
changes. These shifts are theoretically understood as a regime switch between
alternative stable states of the ecosystem dynamical response to smooth changes
in external conditions. Usual models introduce nonlinearities in the
macroscopic dynamics of the ecosystem that lead to different stable attractors
among which the shift takes place. Here we propose an alternative explanation
of catastrophic regime shifts based on a recent model that pictures ecological
communities as systems in continuous fluctuation, according to certain
transition probabilities, between different micro-states in the phase space of
viable communities. We introduce a spontaneous extinction rate that accounts
for gradual changes in external conditions, and upon variations on this control
parameter the system undergoes a regime shift with similar features to those
previously reported. Under our microscopic viewpoint we recover the main
results obtained in previous theoretical and empirical work (anomalous
variance, hysteresis cycles, trophic cascades). The model predicts a gradual
loss of species in trophic levels from bottom to top near the transition. But
more importantly, the spectral analysis of the transition probability matrix
allows us to rigorously establish that we are observing the fingerprints, in a
finite size system, of a true phase transition driven by background
extinctions.Comment: 19 pages, 11 figures, revised versio
The density and pressure of helium nano-bubbles encapsulated in silicon
The excitation in confined and compressed helium atoms in
either the bulk material or encapsulated in a bubble is shifted to energies
higher than that in the free atom. For bulk helium, the energy shifts predicted
from non-empirical electronic structure computations are in excellent agreement
with the experimentally determined values. However, there are significant
discrepancies both between the results of experiments on different bubbles and
between these and the well established descriptions of the bulk. A critique is
presented of previous attempts to determine the densities in bubbles by
measuring the intensities of the electrons inelastically scattered in STEM
experiments. The reported densities are untrustworthy because it was assumed
that the cross section for inelastic electron scattering was the same as that
of a free atom whilst it is now known that this property is greatly enhanced
for atoms confined at significant pressures.
It is shown how experimental measurements of bubbles can be combined with
data on the bulk using a graphical method to determine whether the behavior of
an encapsulated guest differs from that in the bulk material. Experimental
electron energy loss data from an earlier study of helium encapsulated in
silicon is reanalyzed using this new method to show that the properties of the
helium in these bubbles do not differ significantly from those in the bulk
thereby enabling the densities in the bubbles to be determined. These enable
the bubble pressures to be deduced from a well established experimentally
derived equation of state. It is shown that the errors of up to 80% in the
incorrectly determined densities are greatly magnified in the predicted
pressures which can be too large by factors of over seven. This has major
practical implications for the study of radiation damage of materials exposed
to particle bombardment
- …