279 research outputs found
Explicit linear kernels via dynamic programming
Several algorithmic meta-theorems on kernelization have appeared in the last
years, starting with the result of Bodlaender et al. [FOCS 2009] on graphs of
bounded genus, then generalized by Fomin et al. [SODA 2010] to graphs excluding
a fixed minor, and by Kim et al. [ICALP 2013] to graphs excluding a fixed
topological minor. Typically, these results guarantee the existence of linear
or polynomial kernels on sparse graph classes for problems satisfying some
generic conditions but, mainly due to their generality, it is not clear how to
derive from them constructive kernels with explicit constants. In this paper we
make a step toward a fully constructive meta-kernelization theory on sparse
graphs. Our approach is based on a more explicit protrusion replacement
machinery that, instead of expressibility in CMSO logic, uses dynamic
programming, which allows us to find an explicit upper bound on the size of the
derived kernels. We demonstrate the usefulness of our techniques by providing
the first explicit linear kernels for -Dominating Set and -Scattered Set
on apex-minor-free graphs, and for Planar-\mathcal{F}-Deletion on graphs
excluding a fixed (topological) minor in the case where all the graphs in
\mathcal{F} are connected.Comment: 32 page
- …