10 research outputs found

    Phosphorescent Cu(I) Complexes of 2-(2‘-pyridylbenzimidazolyl)benzene:  Impact of Phosphine Ancillary Ligands on Electronic and Photophysical Properties of the Cu(I) Complexes

    No full text
    Four mononuclear Cu(I) complexes of 2-(2‘-pyridyl)benzimidazolylbenzene (pbb) with four different ancillary phosphine ligands PPh3, bis[2-(diphenylphosphino)phenyl]ether (DPEphos), bis(diphenylphosphino)ethane (dppe), and bis(diphenylphosphinomethyl)diphenylborate (DPPMB) have been synthesized. The crystal structures of [Cu(pbb)(PPh3)2][BF4] (1), [Cu(pbb)(dppe)][BF4] (2), [Cu(pbb)(DPEphos)][BF4] (3), and the neutral complex [Cu(pbb)(DPPMB)] (4) were determined by single-crystal X-ray diffraction analyses. The impact of the phosphine ligands on the structures of the copper(I) complexes was examined, revealing that the most significant impact of the phosphine ligands is on the P−Cu−P bond angle. The electronic and photophysical properties of the new complexes were examined by using UV−vis, fluorescence, and phosphorescence spectroscopies and electrochemical analysis. All four complexes display a weak MLCT absorption band that varies considerably with the phosphine ligand. At ambient temperature, no emission was observed for any of the complexes in solution. However, when doped into PMMA polymer (20 wt %), at ambient temperature, all four complexes emit light with a color ranging from green to red-orange, depending on the phosphine ligand. The emission of the new copper complexes has an exceptionally long decay lifetime (>200 μs). Ab initio MO calculations established that the lowest electronic transition in the copper(I) complexes is MLCT in nature. The electronic and photophysical properties of the new mononuclear Cu(I) complexes were compared with those of the corresponding polynuclear Cu(I) complexes based on the 2-(2‘-dipyridyl)benzimidazolyl derivative ligands and the previously extensively studied phenanthroline-based Cu(I) complexes

    Phosphorescent Cu(I) Complexes of 2-(2‘-pyridylbenzimidazolyl)benzene:  Impact of Phosphine Ancillary Ligands on Electronic and Photophysical Properties of the Cu(I) Complexes

    No full text
    Four mononuclear Cu(I) complexes of 2-(2‘-pyridyl)benzimidazolylbenzene (pbb) with four different ancillary phosphine ligands PPh3, bis[2-(diphenylphosphino)phenyl]ether (DPEphos), bis(diphenylphosphino)ethane (dppe), and bis(diphenylphosphinomethyl)diphenylborate (DPPMB) have been synthesized. The crystal structures of [Cu(pbb)(PPh3)2][BF4] (1), [Cu(pbb)(dppe)][BF4] (2), [Cu(pbb)(DPEphos)][BF4] (3), and the neutral complex [Cu(pbb)(DPPMB)] (4) were determined by single-crystal X-ray diffraction analyses. The impact of the phosphine ligands on the structures of the copper(I) complexes was examined, revealing that the most significant impact of the phosphine ligands is on the P−Cu−P bond angle. The electronic and photophysical properties of the new complexes were examined by using UV−vis, fluorescence, and phosphorescence spectroscopies and electrochemical analysis. All four complexes display a weak MLCT absorption band that varies considerably with the phosphine ligand. At ambient temperature, no emission was observed for any of the complexes in solution. However, when doped into PMMA polymer (20 wt %), at ambient temperature, all four complexes emit light with a color ranging from green to red-orange, depending on the phosphine ligand. The emission of the new copper complexes has an exceptionally long decay lifetime (>200 μs). Ab initio MO calculations established that the lowest electronic transition in the copper(I) complexes is MLCT in nature. The electronic and photophysical properties of the new mononuclear Cu(I) complexes were compared with those of the corresponding polynuclear Cu(I) complexes based on the 2-(2‘-dipyridyl)benzimidazolyl derivative ligands and the previously extensively studied phenanthroline-based Cu(I) complexes

    Phosphorescent Cu(I) Complexes of 2-(2‘-pyridylbenzimidazolyl)benzene:  Impact of Phosphine Ancillary Ligands on Electronic and Photophysical Properties of the Cu(I) Complexes

    No full text
    Four mononuclear Cu(I) complexes of 2-(2‘-pyridyl)benzimidazolylbenzene (pbb) with four different ancillary phosphine ligands PPh3, bis[2-(diphenylphosphino)phenyl]ether (DPEphos), bis(diphenylphosphino)ethane (dppe), and bis(diphenylphosphinomethyl)diphenylborate (DPPMB) have been synthesized. The crystal structures of [Cu(pbb)(PPh3)2][BF4] (1), [Cu(pbb)(dppe)][BF4] (2), [Cu(pbb)(DPEphos)][BF4] (3), and the neutral complex [Cu(pbb)(DPPMB)] (4) were determined by single-crystal X-ray diffraction analyses. The impact of the phosphine ligands on the structures of the copper(I) complexes was examined, revealing that the most significant impact of the phosphine ligands is on the P−Cu−P bond angle. The electronic and photophysical properties of the new complexes were examined by using UV−vis, fluorescence, and phosphorescence spectroscopies and electrochemical analysis. All four complexes display a weak MLCT absorption band that varies considerably with the phosphine ligand. At ambient temperature, no emission was observed for any of the complexes in solution. However, when doped into PMMA polymer (20 wt %), at ambient temperature, all four complexes emit light with a color ranging from green to red-orange, depending on the phosphine ligand. The emission of the new copper complexes has an exceptionally long decay lifetime (>200 μs). Ab initio MO calculations established that the lowest electronic transition in the copper(I) complexes is MLCT in nature. The electronic and photophysical properties of the new mononuclear Cu(I) complexes were compared with those of the corresponding polynuclear Cu(I) complexes based on the 2-(2‘-dipyridyl)benzimidazolyl derivative ligands and the previously extensively studied phenanthroline-based Cu(I) complexes

    Phosphorescent Cu(I) Complexes of 2-(2‘-pyridylbenzimidazolyl)benzene:  Impact of Phosphine Ancillary Ligands on Electronic and Photophysical Properties of the Cu(I) Complexes

    No full text
    Four mononuclear Cu(I) complexes of 2-(2‘-pyridyl)benzimidazolylbenzene (pbb) with four different ancillary phosphine ligands PPh3, bis[2-(diphenylphosphino)phenyl]ether (DPEphos), bis(diphenylphosphino)ethane (dppe), and bis(diphenylphosphinomethyl)diphenylborate (DPPMB) have been synthesized. The crystal structures of [Cu(pbb)(PPh3)2][BF4] (1), [Cu(pbb)(dppe)][BF4] (2), [Cu(pbb)(DPEphos)][BF4] (3), and the neutral complex [Cu(pbb)(DPPMB)] (4) were determined by single-crystal X-ray diffraction analyses. The impact of the phosphine ligands on the structures of the copper(I) complexes was examined, revealing that the most significant impact of the phosphine ligands is on the P−Cu−P bond angle. The electronic and photophysical properties of the new complexes were examined by using UV−vis, fluorescence, and phosphorescence spectroscopies and electrochemical analysis. All four complexes display a weak MLCT absorption band that varies considerably with the phosphine ligand. At ambient temperature, no emission was observed for any of the complexes in solution. However, when doped into PMMA polymer (20 wt %), at ambient temperature, all four complexes emit light with a color ranging from green to red-orange, depending on the phosphine ligand. The emission of the new copper complexes has an exceptionally long decay lifetime (>200 μs). Ab initio MO calculations established that the lowest electronic transition in the copper(I) complexes is MLCT in nature. The electronic and photophysical properties of the new mononuclear Cu(I) complexes were compared with those of the corresponding polynuclear Cu(I) complexes based on the 2-(2‘-dipyridyl)benzimidazolyl derivative ligands and the previously extensively studied phenanthroline-based Cu(I) complexes

    Phosphorescent Cu(I) Complexes of 2-(2‘-pyridylbenzimidazolyl)benzene:  Impact of Phosphine Ancillary Ligands on Electronic and Photophysical Properties of the Cu(I) Complexes

    No full text
    Four mononuclear Cu(I) complexes of 2-(2‘-pyridyl)benzimidazolylbenzene (pbb) with four different ancillary phosphine ligands PPh3, bis[2-(diphenylphosphino)phenyl]ether (DPEphos), bis(diphenylphosphino)ethane (dppe), and bis(diphenylphosphinomethyl)diphenylborate (DPPMB) have been synthesized. The crystal structures of [Cu(pbb)(PPh3)2][BF4] (1), [Cu(pbb)(dppe)][BF4] (2), [Cu(pbb)(DPEphos)][BF4] (3), and the neutral complex [Cu(pbb)(DPPMB)] (4) were determined by single-crystal X-ray diffraction analyses. The impact of the phosphine ligands on the structures of the copper(I) complexes was examined, revealing that the most significant impact of the phosphine ligands is on the P−Cu−P bond angle. The electronic and photophysical properties of the new complexes were examined by using UV−vis, fluorescence, and phosphorescence spectroscopies and electrochemical analysis. All four complexes display a weak MLCT absorption band that varies considerably with the phosphine ligand. At ambient temperature, no emission was observed for any of the complexes in solution. However, when doped into PMMA polymer (20 wt %), at ambient temperature, all four complexes emit light with a color ranging from green to red-orange, depending on the phosphine ligand. The emission of the new copper complexes has an exceptionally long decay lifetime (>200 μs). Ab initio MO calculations established that the lowest electronic transition in the copper(I) complexes is MLCT in nature. The electronic and photophysical properties of the new mononuclear Cu(I) complexes were compared with those of the corresponding polynuclear Cu(I) complexes based on the 2-(2‘-dipyridyl)benzimidazolyl derivative ligands and the previously extensively studied phenanthroline-based Cu(I) complexes

    New Phosphorescent Polynuclear Cu(I) Compounds Based on Linear and Star-Shaped 2-(2‘-Pyridyl)benzimidazolyl Derivatives:  Syntheses, Structures, Luminescence, and Electroluminescence

    No full text
    Four dinuclear and trinuclear Cu(I) complexes that contain 2-(2‘-pyridyl)benzimidazolyl derivative ligands including 1,4-bis[2-(2‘-pyridyl)benzimidazolyl]benzene (1,4-bmb), 1,3-bis[2-(2‘-pyridyl)benzimidazolyl]benzene (1,3-bmb), 1,3,5-tris[2-(2‘-pyridyl)benzimidazolyl]benzene (tmb), and 4,4‘-bis[2-(2‘-pyridyl)benzimidazolyl]biphenyl (bmbp) have been synthesized. The formulas of these complexes are [Cu2(1,4-bmb)(PPh3)4][BF4]2 (1), [Cu2(1,3-bmb)(PPh3)4][BF4]2 (2), [Cu3(tmb)(PPh3)6][BF4]3 (3), and [Cu2(bmbp)(PPh3)4][BF4]2 (4), respectively. The crystal structures of 2−4 have been determined by single-crystal X-ray diffraction analyses. The Cu(I) ions in the complexes have a distorted tetrahedral geometry. For 3, two structural isomers (syn and anti) resulted from two different orientations of the three 2-(2‘-pyridyl)benzimidazolyl chelating units were observed in the crystal lattice. Variable-temperature 1H NMR experiments established the presence of syn and anti isomers for 1−3 in solution which interconvert at ambient temperature. Complexes 1−4 have a weak MLCT absorption band in the 350−450 nm region and display a yellow-orange emission when irradiated by UV light. One unexpected finding is that the yellow-orange emission of complexes 1−4 has a very long decay lifetime (∼200 μs) at 77 K. An electroluminescent (EL) device using 4 as the emitter and PVK as the host was fabricated. However, the long decay lifetime of the copper complexes may limit their applications as phosphorescent emitters in EL devices

    New Phosphorescent Polynuclear Cu(I) Compounds Based on Linear and Star-Shaped 2-(2‘-Pyridyl)benzimidazolyl Derivatives:  Syntheses, Structures, Luminescence, and Electroluminescence

    No full text
    Four dinuclear and trinuclear Cu(I) complexes that contain 2-(2‘-pyridyl)benzimidazolyl derivative ligands including 1,4-bis[2-(2‘-pyridyl)benzimidazolyl]benzene (1,4-bmb), 1,3-bis[2-(2‘-pyridyl)benzimidazolyl]benzene (1,3-bmb), 1,3,5-tris[2-(2‘-pyridyl)benzimidazolyl]benzene (tmb), and 4,4‘-bis[2-(2‘-pyridyl)benzimidazolyl]biphenyl (bmbp) have been synthesized. The formulas of these complexes are [Cu2(1,4-bmb)(PPh3)4][BF4]2 (1), [Cu2(1,3-bmb)(PPh3)4][BF4]2 (2), [Cu3(tmb)(PPh3)6][BF4]3 (3), and [Cu2(bmbp)(PPh3)4][BF4]2 (4), respectively. The crystal structures of 2−4 have been determined by single-crystal X-ray diffraction analyses. The Cu(I) ions in the complexes have a distorted tetrahedral geometry. For 3, two structural isomers (syn and anti) resulted from two different orientations of the three 2-(2‘-pyridyl)benzimidazolyl chelating units were observed in the crystal lattice. Variable-temperature 1H NMR experiments established the presence of syn and anti isomers for 1−3 in solution which interconvert at ambient temperature. Complexes 1−4 have a weak MLCT absorption band in the 350−450 nm region and display a yellow-orange emission when irradiated by UV light. One unexpected finding is that the yellow-orange emission of complexes 1−4 has a very long decay lifetime (∼200 μs) at 77 K. An electroluminescent (EL) device using 4 as the emitter and PVK as the host was fabricated. However, the long decay lifetime of the copper complexes may limit their applications as phosphorescent emitters in EL devices

    New Phosphorescent Polynuclear Cu(I) Compounds Based on Linear and Star-Shaped 2-(2‘-Pyridyl)benzimidazolyl Derivatives:  Syntheses, Structures, Luminescence, and Electroluminescence

    No full text
    Four dinuclear and trinuclear Cu(I) complexes that contain 2-(2‘-pyridyl)benzimidazolyl derivative ligands including 1,4-bis[2-(2‘-pyridyl)benzimidazolyl]benzene (1,4-bmb), 1,3-bis[2-(2‘-pyridyl)benzimidazolyl]benzene (1,3-bmb), 1,3,5-tris[2-(2‘-pyridyl)benzimidazolyl]benzene (tmb), and 4,4‘-bis[2-(2‘-pyridyl)benzimidazolyl]biphenyl (bmbp) have been synthesized. The formulas of these complexes are [Cu2(1,4-bmb)(PPh3)4][BF4]2 (1), [Cu2(1,3-bmb)(PPh3)4][BF4]2 (2), [Cu3(tmb)(PPh3)6][BF4]3 (3), and [Cu2(bmbp)(PPh3)4][BF4]2 (4), respectively. The crystal structures of 2−4 have been determined by single-crystal X-ray diffraction analyses. The Cu(I) ions in the complexes have a distorted tetrahedral geometry. For 3, two structural isomers (syn and anti) resulted from two different orientations of the three 2-(2‘-pyridyl)benzimidazolyl chelating units were observed in the crystal lattice. Variable-temperature 1H NMR experiments established the presence of syn and anti isomers for 1−3 in solution which interconvert at ambient temperature. Complexes 1−4 have a weak MLCT absorption band in the 350−450 nm region and display a yellow-orange emission when irradiated by UV light. One unexpected finding is that the yellow-orange emission of complexes 1−4 has a very long decay lifetime (∼200 μs) at 77 K. An electroluminescent (EL) device using 4 as the emitter and PVK as the host was fabricated. However, the long decay lifetime of the copper complexes may limit their applications as phosphorescent emitters in EL devices

    New Phosphorescent Polynuclear Cu(I) Compounds Based on Linear and Star-Shaped 2-(2‘-Pyridyl)benzimidazolyl Derivatives:  Syntheses, Structures, Luminescence, and Electroluminescence

    No full text
    Four dinuclear and trinuclear Cu(I) complexes that contain 2-(2‘-pyridyl)benzimidazolyl derivative ligands including 1,4-bis[2-(2‘-pyridyl)benzimidazolyl]benzene (1,4-bmb), 1,3-bis[2-(2‘-pyridyl)benzimidazolyl]benzene (1,3-bmb), 1,3,5-tris[2-(2‘-pyridyl)benzimidazolyl]benzene (tmb), and 4,4‘-bis[2-(2‘-pyridyl)benzimidazolyl]biphenyl (bmbp) have been synthesized. The formulas of these complexes are [Cu2(1,4-bmb)(PPh3)4][BF4]2 (1), [Cu2(1,3-bmb)(PPh3)4][BF4]2 (2), [Cu3(tmb)(PPh3)6][BF4]3 (3), and [Cu2(bmbp)(PPh3)4][BF4]2 (4), respectively. The crystal structures of 2−4 have been determined by single-crystal X-ray diffraction analyses. The Cu(I) ions in the complexes have a distorted tetrahedral geometry. For 3, two structural isomers (syn and anti) resulted from two different orientations of the three 2-(2‘-pyridyl)benzimidazolyl chelating units were observed in the crystal lattice. Variable-temperature 1H NMR experiments established the presence of syn and anti isomers for 1−3 in solution which interconvert at ambient temperature. Complexes 1−4 have a weak MLCT absorption band in the 350−450 nm region and display a yellow-orange emission when irradiated by UV light. One unexpected finding is that the yellow-orange emission of complexes 1−4 has a very long decay lifetime (∼200 μs) at 77 K. An electroluminescent (EL) device using 4 as the emitter and PVK as the host was fabricated. However, the long decay lifetime of the copper complexes may limit their applications as phosphorescent emitters in EL devices
    corecore