1,532 research outputs found
A question of Frohardt on -groups, and skew translation quadrangles of even order
We solve a fundamental question posed in Frohardt's 1988 paper [Fro] on
finite -groups with Kantor familes, by showing that finite groups with a
Kantor family having distinct members such that is a central subgroup of and the
quotient is abelian cannot exist if the center of has
exponent and the members of are elementary abelian. In a
similar way, we solve another old problem dating back to the 1970s by showing
that finite skew translation quadrangles of even order are always
translation generalized quadrangles.Comment: 10 pages; submitted (February 2018
Central aspects of skew translation quadrangles, I
Except for the Hermitian buildings , up to a combination
of duality, translation duality or Payne integration, every known finite
building of type satisfies a set of general synthetic
properties, usually put together in the term "skew translation generalized
quadrangle" (STGQ). In this series of papers, we classify finite skew
translation generalized quadrangles. In the first installment of the series, as
corollaries of the machinery we develop in the present paper, (a) we obtain the
surprising result that any skew translation quadrangle of odd order is
a symplectic quadrangle; (b) we determine all skew translation quadrangles with
distinct elation groups (a problem posed by Payne in a less general setting);
(c) we develop a structure theory for root-elations of skew translation
quadrangles which will also be used in further parts, and which essentially
tells us that a very general class of skew translation quadrangles admits the
theoretical maximal number of root-elations for each member, and hence all
members are "central" (the main property needed to control STGQs, as which will
be shown throughout); (d) we solve the Main Parameter Conjecture for a class of
STGQs containing the class of the previous item, and which conjecturally
coincides with the class of all STGQs.Comment: 66 pages; submitted (December 2013
Unextendible mutually unbiased bases (after Mandayam, Bandyopadhyay, Grassl and Wootters)
We consider questions posed in a recent paper of Mandayam et al. (2014) on the nature of unextendible mutually unbiased bases. We describe a conceptual framework to study these questions, using a connection proved by the author in Thas (2009) between the set of nonidentity generalized Pauli operators on the Hilbert space of N d-level quantum systems, d a prime, and the geometry of non-degenerate alternating bilinear forms of rank N over finite fields F d
We then supply alternative and short proofs of results obtained in Mandayam et al. (2014), as well as new general bounds for the problems considered in loc. cit. In this setting, we also solve Conjecture 1 of Mandayam et al. (2014) and speculate on variations of this conjecture
Hyperfield extensions, characteristic one and the Connes-Consani plane connection
Inspired by a recent paper of Alain Connes and Catherina Consani which
connects the geometric theory surrounding the elusive field with one element to
sharply transitive group actions on finite and infinite projective spaces
("Singer actions"), we consider several fudamental problems and conjectures
about Singer actions. Among other results, we show that virtually all infinite
abelian groups and all (possibly infinitely generated) free groups act as
Singer groups on certain projective planes, as a corollary of a general
criterion. We investigate for which fields the plane
(and more generally the
space ) admits a Singer
group, and show, e.g., that for any prime and any positive integer ,
cannot admit Singer groups. One of the
main results in characteristic , also as a corollary of a criterion which
applies to many other fields, is that with a positive even integer, cannot admit Singer groups.Comment: 25 pages; submitted (June 2014). arXiv admin note: text overlap with
arXiv:1406.544
- …