12 research outputs found

    A Universal Wet-Chemistry Route to Metal Filling of Boron Nitride Nanotubes

    No full text
    We present a facile wet-chemistry method for efficient metal filling of the hollow inner cores of boron nitride nanotubes (BNNTs). The fillers conform to the cross-section of the tube cavity and extend in length from a few nm to hundreds of nm. The methodology is robust and is demonstrated for noble metals (Au, Pt, Pd, and Ag), transition metals (Co), and post-transition elements (In). Transmission electron microscopy and related electron spectroscopy confirm the composition and morphology of the filler nanoparticles. Up to 60% of BNNTs of a given preparation batch have some degree of metal encapsulation, and individual tubes can have up to 10% of their core volume filled during initial loading. The growth, movement, and fusing of metal nanoparticles within the BNNTs are also examined

    Suspended Graphene Membranes to Control Au Nucleation and Growth

    No full text
    Control of nucleation sites is an important goal in materials growth: nuclei in regular arrays may show emergent photonic or electronic behavior, and once the nuclei coalesce into thin films, the nucleation density influences parameters such as surface roughness, stress, and grain boundary structure. Tailoring substrate properties to control nucleation is therefore a powerful tool for designing functional thin films and nanomaterials. Here, we examine nucleation control for metals deposited on two-dimensional materials in a situation where substrate effects are absent and heterogeneous nucleation sites are minimized. Through quantification of faceted, epitaxial Au island nucleation on graphene, we show that ultralow nucleation densities with nuclei several micrometers apart can be achieved on suspended graphene under conditions where we measure 2–3 orders of magnitude higher nucleation density on the adjacent supported substrate. We estimate diffusion distances using nucleation theory and find a strong sensitivity of nucleation and diffusion to suspended graphene thickness. Finally, we discuss the role of surface roughness as the main factor determining nucleation density on clean free-standing graphene

    In Situ Localized Growth of Ordered Metal Oxide Hollow Sphere Array on Microheater Platform for Sensitive, Ultra-Fast Gas Sensing

    No full text
    A simple and versatile strategy is presented for the localized on-chip synthesis of an ordered metal oxide hollow sphere array directly on a low power microheater platform to form a closely integrated miniaturized gas sensor. Selective microheater surface modification through fluorinated monolayer self-assembly and its subsequent microheater-induced thermal decomposition enables the position-controlled deposition of an ordered two-dimensional colloidal sphere array, which serves as a sacrificial template for metal oxide growth via homogeneous chemical precipitation; this strategy ensures control in both the morphology and placement of the sensing material on only the active heated area of the microheater platform, providing a major advantage over other methods of presynthesized nanomaterial integration via suspension coating or printing. A fabricated tin oxide hollow sphere-based sensor shows high sensitivity (6.5 ppb detection limit) and selectivity toward formaldehyde, and extremely fast response (1.8 s) and recovery (5.4 s) times. This flexible and scalable method can be used to fabricate high performance miniaturized gas sensors with a variety of hollow nanostructured metal oxides for a range of applications, including combining multiple metal oxides for superior sensitivity and tunable selectivity

    Formation and Dynamics of Electron-Irradiation-Induced Defects in Hexagonal Boron Nitride at Elevated Temperatures

    No full text
    The atomic structure, stability, and dynamics of defects in hexagonal boron nitride (h-BN) are investigated using an aberration-corrected transmission electron microscope operated at 80 kV between room temperature and 1000 °C. At temperatures above 700 °C, parallelogram- and hexagon-shaped defects with zigzag edges become prominent, in contrast to the triangular defects typically observed at lower temperatures. The appearance of 120° corners at defect vertices indicates the coexistence of both N- and B-terminated zigzag edges in the same defect. In situ dynamics studies show that the hexagonal holes grow by electron-induced sputtering of B–N chains, and that at high temperatures these chains can migrate from one defect corner to another. We complement the experiments with first-principles calculation which consider the thermal equilibrium formation energy of different defect configurations. It is shown that, below a critical defect size, hexagonal defects have the lowest formation energy and therefore are the more-stable configuration, and triangular defects are energetically metastable but can be “frozen in” under experimental conditions. We also discuss the possible contributions of several dynamic processes to the temperature-dependent defect formation

    Formation and Dynamics of Electron-Irradiation-Induced Defects in Hexagonal Boron Nitride at Elevated Temperatures

    No full text
    The atomic structure, stability, and dynamics of defects in hexagonal boron nitride (h-BN) are investigated using an aberration-corrected transmission electron microscope operated at 80 kV between room temperature and 1000 °C. At temperatures above 700 °C, parallelogram- and hexagon-shaped defects with zigzag edges become prominent, in contrast to the triangular defects typically observed at lower temperatures. The appearance of 120° corners at defect vertices indicates the coexistence of both N- and B-terminated zigzag edges in the same defect. In situ dynamics studies show that the hexagonal holes grow by electron-induced sputtering of B–N chains, and that at high temperatures these chains can migrate from one defect corner to another. We complement the experiments with first-principles calculation which consider the thermal equilibrium formation energy of different defect configurations. It is shown that, below a critical defect size, hexagonal defects have the lowest formation energy and therefore are the more-stable configuration, and triangular defects are energetically metastable but can be “frozen in” under experimental conditions. We also discuss the possible contributions of several dynamic processes to the temperature-dependent defect formation

    Formation and Dynamics of Electron-Irradiation-Induced Defects in Hexagonal Boron Nitride at Elevated Temperatures

    No full text
    The atomic structure, stability, and dynamics of defects in hexagonal boron nitride (h-BN) are investigated using an aberration-corrected transmission electron microscope operated at 80 kV between room temperature and 1000 °C. At temperatures above 700 °C, parallelogram- and hexagon-shaped defects with zigzag edges become prominent, in contrast to the triangular defects typically observed at lower temperatures. The appearance of 120° corners at defect vertices indicates the coexistence of both N- and B-terminated zigzag edges in the same defect. In situ dynamics studies show that the hexagonal holes grow by electron-induced sputtering of B–N chains, and that at high temperatures these chains can migrate from one defect corner to another. We complement the experiments with first-principles calculation which consider the thermal equilibrium formation energy of different defect configurations. It is shown that, below a critical defect size, hexagonal defects have the lowest formation energy and therefore are the more-stable configuration, and triangular defects are energetically metastable but can be “frozen in” under experimental conditions. We also discuss the possible contributions of several dynamic processes to the temperature-dependent defect formation

    Mechanisms of Quasi van der Waals Epitaxy of Three-Dimensional Metallic Nanoislands on Suspended Two-Dimensional Materials

    No full text
    Understanding structure at the interface between two-dimensional (2D) materials and 3D metals is crucial for designing novel 2D/3D heterostructures and improving the performance of many 2D material devices. Here, we quantify and discuss the 2D/3D interface structure and the 3D morphology in several materials systems. We first deposit faceted Au nanoislands on graphene and transition metal dichalcogenides, using measurements of the equilibrium island shape to determine values for the 2D/Au interface energy and examining the role of surface reconstructions, chemical identity, and defects on the grown structures. We then deposit the technologically relevant metals Ti and Nb under conditions where kinetic rather than thermodynamic factors govern growth. We describe a transition from dendritic to faceted islands as a function of growth temperature and discuss the factors determining island shape in these materials systems. Finally, we show that suspended 2D materials enable the fabrication of a novel type of 3D/2D/3D heterostructure and discuss the growth mechanism. We suggest that emerging nanodevices will utilize versatile fabrication of 2D/3D heterostructures with well-characterized interfaces and morphologies

    Mechanisms of Quasi van der Waals Epitaxy of Three-Dimensional Metallic Nanoislands on Suspended Two-Dimensional Materials

    No full text
    Understanding structure at the interface between two-dimensional (2D) materials and 3D metals is crucial for designing novel 2D/3D heterostructures and improving the performance of many 2D material devices. Here, we quantify and discuss the 2D/3D interface structure and the 3D morphology in several materials systems. We first deposit faceted Au nanoislands on graphene and transition metal dichalcogenides, using measurements of the equilibrium island shape to determine values for the 2D/Au interface energy and examining the role of surface reconstructions, chemical identity, and defects on the grown structures. We then deposit the technologically relevant metals Ti and Nb under conditions where kinetic rather than thermodynamic factors govern growth. We describe a transition from dendritic to faceted islands as a function of growth temperature and discuss the factors determining island shape in these materials systems. Finally, we show that suspended 2D materials enable the fabrication of a novel type of 3D/2D/3D heterostructure and discuss the growth mechanism. We suggest that emerging nanodevices will utilize versatile fabrication of 2D/3D heterostructures with well-characterized interfaces and morphologies

    Ultrasmooth Epitaxial Pt Thin Films Grown by Pulsed Laser Deposition

    No full text
    Platinum (Pt) thin films are useful in applications requiring high-conductivity electrodes with excellent thermal and chemical stability. Ultrasmooth and epitaxial Pt thin films with single-crystalline domains have the added benefit of providing ideal templates for the subsequent growth of heteroepitaxial structures. Here, we grow epitaxial Pt (111) electrodes (ca. 30 nm thick) on sapphire (α-Al2O3 (0001)) substrates with pulsed laser deposition. This versatile technique allows control of the growth process and fabrication of films with carefully tailored parameters. X-ray scattering, atomic-force microscopy, and electron microscopy provide structural characterization of the films. Various gaseous atmospheres and temperatures were explored to achieve epitaxial growth of films with low roughness. A two-step (500 °C/300 °C) growth process was developed, yielding films with improved epitaxy without compromising roughness. The resulting films possess ultrasmooth interfaces (<3 Å) and high electrical conductivity (6.9 × 106 S/m). Finally, Pt films were used as current collectors and templates to grow lithium manganese oxide (LiMn2O4 (111)) epitaxial thin films, a cathode material used in Li-ion batteries. Using a solid-state ionogel electrolyte, the films were highly stable when electrochemically cycled in the 3.5–4.3 V vs Li/Li+ range
    corecore