131 research outputs found

    Memcapacitive Devices in Logic and Crossbar Applications

    Get PDF
    Over the last decade, memristive devices have been widely adopted in computing for various conventional and unconventional applications. While the integration density, memory property, and nonlinear characteristics have many benefits, reducing the energy consumption is limited by the resistive nature of the devices. Memcapacitors would address that limitation while still having all the benefits of memristors. Recent work has shown that with adjusted parameters during the fabrication process, a metal-oxide device can indeed exhibit a memcapacitive behavior. We introduce novel memcapacitive logic gates and memcapacitive crossbar classifiers as a proof of concept that such applications can outperform memristor-based architectures. The results illustrate that, compared to memristive logic gates, our memcapacitive gates consume about 7x less power. The memcapacitive crossbar classifier achieves similar classification performance but reduces the power consumption by a factor of about 1,500x for the MNIST dataset and a factor of about 1,000x for the CIFAR-10 dataset compared to a memristive crossbar. Our simulation results demonstrate that memcapacitive devices have great potential for both Boolean logic and analog low-power applications

    Delay Line as a Chemical Reaction Network

    Get PDF
    Chemistry as an unconventional computing medium presently lacks a systematic approach to gather, store, and sort data over time. To build more complicated systems in chemistries, the ability to look at data in the past would be a valuable tool to perform complex calculations. In this paper we present the first implementation of a chemical delay line providing information storage in a chemistry that can reliably capture information over an extended period of time. The delay line is capable of parallel operations in a single instruction, multiple data (SIMD) fashion. Using Michaelis-Menten kinetics, we describe the chemical delay line implementation featuring an enzyme acting as a means to reduce copy errors. We also discuss how information is randomly accessible from any element on the delay line. Our work shows how the chemical delay line retains and provides a value from a previous cycle. The system's modularity allows for integration with existing chemical systems. We exemplify the delay line capabilities by integration with a threshold asymmetric signal perceptron to demonstrate how it learns all 14 linearly separable binary functions over a size two sliding window. The delay line has applications in biomedical diagnosis and treatment, such as smart drug delivery.Comment: 9 pages, 11 figures, 6 table

    COEL: A Web-based Chemistry Simulation Framework

    Get PDF
    The chemical reaction network (CRN) is a widely used formalism to describe macroscopic behavior of chemical systems. Available tools for CRN modelling and simulation require local access, installation, and often involve local file storage, which is susceptible to loss, lacks searchable structure, and does not support concurrency. Furthermore, simulations are often single-threaded, and user interfaces are non-trivial to use. Therefore there are significant hurdles to conducting efficient and collaborative chemical research. In this paper, we introduce a new enterprise chemistry simulation framework, COEL, which addresses these issues. COEL is the first web-based framework of its kind. A visually pleasing and intuitive user interface, simulations that run on a large computational grid, reliable database storage, and transactional services make COEL ideal for collaborative research and education. COEL's most prominent features include ODE-based simulations of chemical reaction networks and multicompartment reaction networks, with rich options for user interactions with those networks. COEL provides DNA-strand displacement transformations and visualization (and is to our knowledge the first CRN framework to do so), GA optimization of rate constants, expression validation, an application-wide plotting engine, and SBML/Octave/Matlab export. We also present an overview of the underlying software and technologies employed and describe the main architectural decisions driving our development. COEL is available at http://coel-sim.org for selected research teams only. We plan to provide a part of COEL's functionality to the general public in the near future.Comment: 23 pages, 12 figures, 1 tabl

    When correlations matter - response of dynamical networks to small perturbations

    Full text link
    We systematically study and compare damage spreading for random Boolean and threshold networks under small external perturbations (damage), a problem which is relevant to many biological networks. We identify a new characteristic connectivity KsK_s, at which the average number of damaged nodes after a large number of dynamical updates is independent of the total number of nodes NN. We estimate the critical connectivity for finite NN and show that it systematically deviates from the annealed approximation. Extending the approach followed in a previous study, we present new results indicating that internal dynamical correlations tend to increase not only the probability for small, but also for very large damage events, leading to a broad, fat-tailed distribution of damage sizes. These findings indicate that the descriptive and predictive value of averaged order parameters for finite size networks - even for biologically highly relevant sizes up to several thousand nodes - is limited.Comment: 4 pages, 4 figures. Accepted for the "Workshop on Computational Systems Biology", Leipzig 200

    Unconventional Computing Catechism

    Get PDF
    What makes a new paradigm or technology promising? What should science, research, and industry invest money in? Is there a life after CMOS electronics? And will the vacuum tube be back? While one cannot predict the future, one can still learn from the past. Over the last decade, unconventional computing developed into a major new research area with the goal to look beyond existing paradigms. In this Perspective, we reflect on the current state of the field and propose a set of questions that anyone working in unconventional computing should be able to answer in order to assess the potential of new paradigms early on

    Learning, Generalization, and Functional Entropy in Random Automata Networks

    Full text link
    It has been shown \citep{broeck90:physicalreview,patarnello87:europhys} that feedforward Boolean networks can learn to perform specific simple tasks and generalize well if only a subset of the learning examples is provided for learning. Here, we extend this body of work and show experimentally that random Boolean networks (RBNs), where both the interconnections and the Boolean transfer functions are chosen at random initially, can be evolved by using a state-topology evolution to solve simple tasks. We measure the learning and generalization performance, investigate the influence of the average node connectivity KK, the system size NN, and introduce a new measure that allows to better describe the network's learning and generalization behavior. We show that the connectivity of the maximum entropy networks scales as a power-law of the system size NN. Our results show that networks with higher average connectivity KK (supercritical) achieve higher memorization and partial generalization. However, near critical connectivity, the networks show a higher perfect generalization on the even-odd task

    Computational Capacity and Energy Consumption of Complex Resistive Switch Networks

    Get PDF
    Resistive switches are a class of emerging nanoelectronics devices that exhibit a wide variety of switching characteristics closely resembling behaviors of biological synapses. Assembled into random networks, such resistive switches produce emerging behaviors far more complex than that of individual devices. This was previously demonstrated in simulations that exploit information processing within these random networks to solve tasks that require nonlinear computation as well as memory. Physical assemblies of such networks manifest complex spatial structures and basic processing capabilities often related to biologically-inspired computing. We model and simulate random resistive switch networks and analyze their computational capacities. We provide a detailed discussion of the relevant design parameters and establish the link to the physical assemblies by relating the modeling parameters to physical parameters. More globally connected networks and an increased network switching activity are means to increase the computational capacity linearly at the expense of exponentially growing energy consumption. We discuss a new modular approach that exhibits higher computational capacities and energy consumption growing linearly with the number of networks used. The results show how to optimize the trade-off between computational capacity and energy efficiency and are relevant for the design and fabrication of novel computing architectures that harness random assemblies of emerging nanodevices
    • …
    corecore