23 research outputs found

    Organic Design of Massively Distributed Systems: A Complex Networks Perspective

    Full text link
    The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components or devices. Here, the notion organic particularly highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying many of the interesting characteristics of natural systems have been investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic networked computing systems with predictable, quantifiable and controllable self-* properties.Comment: 17 pages, 14 figures, preprint of submission to Informatik-Spektrum published by Springe

    Hierarchical mutual information for the comparison of hierarchical community structures in complex networks

    Get PDF
    The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the {\it hierarchical mutual information}, which is a generalization of the traditional mutual information, and allows to compare hierarchical partitions and hierarchical community structures. The {\it normalized} version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here, the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies, and on the hierarchical community structure of artificial and empirical networks. Furthermore, the experiments illustrate some of the practical applications of the hierarchical mutual information. Namely, the comparison of different community detection methods, and the study of the consistency, robustness and temporal evolution of the hierarchical modular structure of networks.Comment: 14 pages and 12 figure

    Synchronization of extended chaotic systems with long-range interactions: an analogy to Levy-flight spreading of epidemics

    Get PDF
    Spatially extended chaotic systems with power-law decaying interactions are considered. Two coupled replicas of such systems synchronize to a common spatio-temporal chaotic state above a certain coupling strength. The synchronization transition is studied as a nonequilibrium phase transition and its critical properties are analyzed at varying the interaction range. The transition is found to be always continuous, while the critical indexes vary with continuity with the power law exponent characterizing the interaction. Strong numerical evidences indicate that the transition belongs to the {\it anomalous directed percolation} family of universality classes found for L{\'e}vy-flight spreading of epidemic processes.Comment: 4 revTeX4.0 pages, 3 color figs;added references and minor changes;Revised version accepted for pubblication on PR

    Organic Design of Massively Distributed Systems: A Complex Networks Perspective

    Get PDF
    The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components. The notion organic highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying these characteristics are increasingly being investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic overlay networks with predictable macroscopic propertie

    Quantifying knowledge exchange in R&D networks: A data-driven model

    Full text link
    We propose a model that reflects two important processes in R&D activities of firms, the formation of R&D alliances and the exchange of knowledge as a result of these collaborations. In a data-driven approach, we analyze two large-scale data sets extracting unique information about 7500 R&D alliances and 5200 patent portfolios of firms. This data is used to calibrate the model parameters for network formation and knowledge exchange. We obtain probabilities for incumbent and newcomer firms to link to other incumbents or newcomers which are able to reproduce the topology of the empirical R&D network. The position of firms in a knowledge space is obtained from their patents using two different classification schemes, IPC in 8 dimensions and ISI-OST-INPI in 35 dimensions. Our dynamics of knowledge exchange assumes that collaborating firms approach each other in knowledge space at a rate μ\mu for an alliance duration τ\tau. Both parameters are obtained in two different ways, by comparing knowledge distances from simulations and empirics and by analyzing the collaboration efficiency C^n\mathcal{\hat{C}}_{n}. This is a new measure, that takes also in account the effort of firms to maintain concurrent alliances, and is evaluated via extensive computer simulations. We find that R&D alliances have a duration of around two years and that the subsequent knowledge exchange occurs at a very low rate. Hence, a firm's position in the knowledge space is rather a determinant than a consequence of its R&D alliances. From our data-driven approach we also find model configurations that can be both realistic and optimized with respect to the collaboration efficiency C^n\mathcal{\hat{C}}_{n}. Effective policies, as suggested by our model, would incentivize shorter R&D alliances and higher knowledge exchange rates.Comment: 35 pages, 10 figure
    corecore