23 research outputs found
Organic Design of Massively Distributed Systems: A Complex Networks Perspective
The vision of Organic Computing addresses challenges that arise in the design
of future information systems that are comprised of numerous, heterogeneous,
resource-constrained and error-prone components or devices. Here, the notion
organic particularly highlights the idea that, in order to be manageable, such
systems should exhibit self-organization, self-adaptation and self-healing
characteristics similar to those of biological systems. In recent years, the
principles underlying many of the interesting characteristics of natural
systems have been investigated from the perspective of complex systems science,
particularly using the conceptual framework of statistical physics and
statistical mechanics. In this article, we review some of the interesting
relations between statistical physics and networked systems and discuss
applications in the engineering of organic networked computing systems with
predictable, quantifiable and controllable self-* properties.Comment: 17 pages, 14 figures, preprint of submission to Informatik-Spektrum
published by Springe
Hierarchical mutual information for the comparison of hierarchical community structures in complex networks
The quest for a quantitative characterization of community and modular
structure of complex networks produced a variety of methods and algorithms to
classify different networks. However, it is not clear if such methods provide
consistent, robust and meaningful results when considering hierarchies as a
whole. Part of the problem is the lack of a similarity measure for the
comparison of hierarchical community structures. In this work we give a
contribution by introducing the {\it hierarchical mutual information}, which is
a generalization of the traditional mutual information, and allows to compare
hierarchical partitions and hierarchical community structures. The {\it
normalized} version of the hierarchical mutual information should behave
analogously to the traditional normalized mutual information. Here, the correct
behavior of the hierarchical mutual information is corroborated on an extensive
battery of numerical experiments. The experiments are performed on artificial
hierarchies, and on the hierarchical community structure of artificial and
empirical networks. Furthermore, the experiments illustrate some of the
practical applications of the hierarchical mutual information. Namely, the
comparison of different community detection methods, and the study of the
consistency, robustness and temporal evolution of the hierarchical modular
structure of networks.Comment: 14 pages and 12 figure
Synchronization of extended chaotic systems with long-range interactions: an analogy to Levy-flight spreading of epidemics
Spatially extended chaotic systems with power-law decaying interactions are
considered. Two coupled replicas of such systems synchronize to a common
spatio-temporal chaotic state above a certain coupling strength. The
synchronization transition is studied as a nonequilibrium phase transition and
its critical properties are analyzed at varying the interaction range. The
transition is found to be always continuous, while the critical indexes vary
with continuity with the power law exponent characterizing the interaction.
Strong numerical evidences indicate that the transition belongs to the {\it
anomalous directed percolation} family of universality classes found for
L{\'e}vy-flight spreading of epidemic processes.Comment: 4 revTeX4.0 pages, 3 color figs;added references and minor
changes;Revised version accepted for pubblication on PR
Organic Design of Massively Distributed Systems: A Complex Networks Perspective
The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components. The notion organic highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying these characteristics are increasingly being investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic overlay networks with predictable macroscopic propertie
Quantifying knowledge exchange in R&D networks: A data-driven model
We propose a model that reflects two important processes in R&D activities of
firms, the formation of R&D alliances and the exchange of knowledge as a result
of these collaborations. In a data-driven approach, we analyze two large-scale
data sets extracting unique information about 7500 R&D alliances and 5200
patent portfolios of firms. This data is used to calibrate the model parameters
for network formation and knowledge exchange. We obtain probabilities for
incumbent and newcomer firms to link to other incumbents or newcomers which are
able to reproduce the topology of the empirical R&D network. The position of
firms in a knowledge space is obtained from their patents using two different
classification schemes, IPC in 8 dimensions and ISI-OST-INPI in 35 dimensions.
Our dynamics of knowledge exchange assumes that collaborating firms approach
each other in knowledge space at a rate for an alliance duration .
Both parameters are obtained in two different ways, by comparing knowledge
distances from simulations and empirics and by analyzing the collaboration
efficiency . This is a new measure, that takes also in
account the effort of firms to maintain concurrent alliances, and is evaluated
via extensive computer simulations. We find that R&D alliances have a duration
of around two years and that the subsequent knowledge exchange occurs at a very
low rate. Hence, a firm's position in the knowledge space is rather a
determinant than a consequence of its R&D alliances. From our data-driven
approach we also find model configurations that can be both realistic and
optimized with respect to the collaboration efficiency .
Effective policies, as suggested by our model, would incentivize shorter R&D
alliances and higher knowledge exchange rates.Comment: 35 pages, 10 figure