292 research outputs found
Trace Formulas in Connection with Scattering Theory for Quasi-Periodic Background
We investigate trace formulas for Jacobi operators which are trace class
perturbations of quasi-periodic finite-gap operators using Krein's spectral
shift theory. In particular we establish the conserved quantities for the
solutions of the Toda hierarchy in this class.Comment: 7 page
On the Equivalence of Different Lax Pairs for the Kac-van Moerbeke Hierarchy
We give a simple algebraic proof that the two different Lax pairs for the
Kac-van Moerbeke hierarchy, constructed from Jacobi respectively
super-symmetric Dirac-type difference operators, give rise to the same
hierarchy of evolution equations. As a byproduct we obtain some new recursions
for computing these equations.Comment: 8 page
Scattering Theory for Jacobi Operators with Steplike Quasi-Periodic Background
We develop direct and inverse scattering theory for Jacobi operators with
steplike quasi-periodic finite-gap background in the same isospectral class. We
derive the corresponding Gel'fand-Levitan-Marchenko equation and find minimal
scattering data which determine the perturbed operator uniquely. In addition,
we show how the transmission coefficients can be reconstructed from the
eigenvalues and one of the reflection coefficients.Comment: 14 page
Reconstructing Jacobi Matrices from Three Spectra
Cut a Jacobi matrix into two pieces by removing the n-th column and n-th row.
We give neccessary and sufficient conditions for the spectra of the original
matrix plus the spectra of the two submatrices to uniqely determine the
original matrix. Our result contains Hostadt's original result as a special
case
Long-Time Asymptotics of the Toda Lattice for Decaying Initial Data Revisited
The purpose of this article is to give a streamlined and self-contained
treatment of the long-time asymptotics of the Toda lattice for decaying initial
data in the soliton and in the similarity region via the method of nonlinear
steepest descent.Comment: 41 page
The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy
We discuss the algebro-geometric initial value problem for the Ablowitz-Ladik
hierarchy with complex-valued initial data and prove unique solvability
globally in time for a set of initial (Dirichlet divisor) data of full measure.
To this effect we develop a new algorithm for constructing stationary
complex-valued algebro-geometric solutions of the Ablowitz-Ladik hierarchy,
which is of independent interest as it solves the inverse algebro-geometric
spectral problem for general (non-unitary) Ablowitz-Ladik Lax operators,
starting from a suitably chosen set of initial divisors of full measure.
Combined with an appropriate first-order system of differential equations with
respect to time (a substitute for the well-known Dubrovin-type equations), this
yields the construction of global algebro-geometric solutions of the
time-dependent Ablowitz-Ladik hierarchy.
The treatment of general (non-unitary) Lax operators associated with general
coefficients for the Ablowitz-Ladik hierarchy poses a variety of difficulties
that, to the best of our knowledge, are successfully overcome here for the
first time. Our approach is not confined to the Ablowitz-Ladik hierarchy but
applies generally to (1+1)-dimensional completely integrable soliton equations
of differential-difference type.Comment: 47 page
Lattice two-body problem with arbitrary finite range interactions
We study the exact solution of the two-body problem on a tight-binding
one-dimensional lattice, with pairwise interaction potentials which have an
arbitrary but finite range. We show how to obtain the full spectrum, the bound
and scattering states and the "low-energy" solutions by very efficient and
easy-to-implement numerical means. All bound states are proven to be
characterized by roots of a polynomial whose degree depends linearly on the
range of the potential, and we discuss the connections between the number of
bound states and the scattering lengths. "Low-energy" resonances can be located
with great precission with the methods we introduce. Further generalizations to
include more exotic interactions are also discussed.Comment: 6 pages, 3 figure
Invisibility in non-Hermitian tight-binding lattices
Reflectionless defects in Hermitian tight-binding lattices, synthesized by
the intertwining operator technique of supersymmetric quantum mechanics, are
generally not invisible and time-of-flight measurements could reveal the
existence of the defects. Here it is shown that, in a certain class of
non-Hermitian tight-binding lattices with complex hopping amplitudes, defects
in the lattice can appear fully invisible to an outside observer. The
synthesized non-Hermitian lattices with invisible defects possess a real-valued
energy spectrum, however they lack of parity-time (PT) symmetry, which does not
play any role in the present work.Comment: to appear in Phys. Rev.
Singular components of spectral measures for ergodic Jacobi matrices
For ergodic 1d Jacobi operators we prove that the random singular components
of any spectral measure are almost surely mutually disjoint as long as one
restricts to the set of positive Lyapunov exponent. In the context of extended
Harper's equation this yields the first rigorous proof of the Thouless' formula
for the Lyapunov exponent in the dual regions.Comment: to appear in the Journal of Mathematical Physics, vol 52 (2011
Relative Oscillation Theory, Weighted Zeros of the Wronskian, and the Spectral Shift Function
We develop an analog of classical oscillation theory for Sturm-Liouville
operators which, rather than measuring the spectrum of one single operator,
measures the difference between the spectra of two different operators.
This is done by replacing zeros of solutions of one operator by weighted
zeros of Wronskians of solutions of two different operators. In particular, we
show that a Sturm-type comparison theorem still holds in this situation and
demonstrate how this can be used to investigate the finiteness of eigenvalues
in essential spectral gaps. Furthermore, the connection with Krein's spectral
shift function is established.Comment: 26 page
- …