364 research outputs found

    A spectroscopic survey of Orion KL between 41.5 and 50 GHz

    Full text link
    Orion KL is one of the most frequently observed sources in the Galaxy, and the site where many molecular species have been discovered for the first time. With the availability of powerful wideband backends, it is nowadays possible to complete spectral surveys in the entire mm-range to obtain a spectroscopically unbiased chemical picture of the region. In this paper we present a sensitive spectral survey of Orion KL, made with one of the 34m antennas of the Madrid Deep Space Communications Complex in Robledo de Chavela, Spain. The spectral range surveyed is from 41.5 to 50 GHz, with a frequency spacing of 180 kHz (equivalent to about 1.2 km/s, depending on the exact frequency). The rms achieved ranges from 8 to 12 mK. The spectrum is dominated by the J=1-0 SiO maser lines and by radio recombination lines (RRLs), which were detected up to Delta_n=11. Above a 3-sigma level, we identified 66 RRLs and 161 molecular lines corresponding to 39 isotopologues from 20 molecules; a total of 18 lines remain unidentified, two of them above a 5-sigma level. Results of radiative modelling of the detected molecular lines (excluding masers) are presented. At this frequency range, this is the most sensitive survey and also the one with the widest band. Although some complex molecules like CH_3CH_2CN and CH_2CHCN arise from the hot core, most of the detected molecules originate from the low temperature components in Orion KL.Comment: Accepted for Astronomy and Astrophysics. 29 pages, 5 tables, 6 figure

    Complex organic molecules in strongly UV-irradiated gas

    Full text link
    We investigate the presence of COMs in strongly UV-irradiated interstellar molecular gas. We have carried out a complete millimetre line survey using the IRAM30m telescope towards the edge of the Orion Bar photodissociation region (PDR), close to the H2 dissociation front, a position irradiated by a very intense far-UV (FUV) radiation field. These observations have been complemented with 8.5 arcsec resolution maps of the H2CO 5(1,5)-4(1,4) and C18O 3-2 emission at 0.9 mm. Despite being a harsh environment, we detect more than 250 lines from COMs and related precursors: H2CO, CH3OH, HCO, H2CCO, CH3CHO, H2CS, HCOOH, CH3CN, CH2NH, HNCO, H13-2CO, and HC3N (in decreasing order of abundance). For each species, the large number of detected lines allowed us to accurately constrain their rotational temperatures (Trot) and column densities (N). Owing to subthermal excitation and intricate spectroscopy of some COMs (symmetric- and asymmetric-top molecules such as CH3CN and H2CO, respectively), a correct determination of N and Trot requires building rotational population diagrams of their rotational ladders separately. We also provide accurate upper limit abundances for chemically related molecules that might have been expected, but are not conclusively detected at the edge of the PDR (HDCO, CH3O, CH3NC, CH3CCH, CH3OCH3, HCOOCH3, CH3CH2OH, CH3CH2CN, and CH2CHCN). A non-LTE LVG excitation analysis for molecules with known collisional rate coefficients, suggests that some COMs arise from different PDR layers but we cannot resolve them spatially. In particular, H2CO and CH3CN survive in the extended gas directly exposed to the strong FUV flux (Tk = 150-250 K and Td > 60 K), whereas CH3OH only arises from denser and cooler gas clumps in the more shielded PDR interior (Tk = 40-50 K). We find a HCO/H2CO/CH3OH = 1/5/3 abundance ratio. These ratios are different from those inferred in hot cores and shocks.Comment: 29 pages, 22 figures, 17 tables. Accepted for publication in A&A (abstract abridged

    Extended warm gas in Orion KL as probed by methyl cyanide

    Full text link
    In order to study the temperature distribution of the extended gas within the Orion Kleinmann-Low nebula, we have mapped the emission by methyl cyanide (CH3CN) in its J=6_K-5_K, J=12_K-11_K, J=13_K-12_K, and J=14_K-13_K transitions at an average angular resolution of ~10 arcsec (22 arcsec for the 6_K-5_K lines), as part of a new 2D line survey of this region using the IRAM 30m telescope. These fully sampled maps show extended emission from warm gas to the northeast of IRc2 and the distinct kinematic signatures of the hot core and compact ridge source components. We have constructed population diagrams for the four sets of K-ladder emission lines at each position in the maps and have derived rotational excitation temperatures and total beam-averaged column densities from the fitted slopes. In addition, we have fitted LVG model spectra to the observations to determine best-fit physical parameters at each map position, yielding the distribution of kinetic temperatures across the region. The resulting temperature maps reveal a region of hot (T > 350 K) material surrounding the northeastern edge of the hot core, whereas the column density distribution is more uniform and peaks near the position of IRc2. We attribute this region of hot gas to shock heating caused by the impact of outflowing material from active star formation in the region, as indicated by the presence of broad CH3CN lines. This scenario is consistent with predictions from C-shock chemical models that suggest that gas-phase methyl cyanide survives in the post-shock gas and can be somewhat enhanced due to sputtering of grain mantles in the passing shock front.Comment: 24 pages, 20 figures, accepted for publication in A&

    A line confusion-limited millimeter survey of Orion KL. III. Sulfur oxide species

    Full text link
    We present a study of the sulfur-bearing species detected in a line confusion-limited survey towards Orion KL performed with the IRAM 30m telescope in the range 80-281 GHz. The study is part of an analysis of the line survey divided into families of molecules. Our aim is to derive accurate physical conditions and molecular abundances in the different components of Orion KL from observed SO and SO2 lines. First we assumed LTE conditions obtain rotational temperatures. We then used a radiative transfer model, assuming either LVG or LTE excitation to derive column densities of these molecules in the different components of Orion KL. We have detected 68 lines of SO, 34SO, 33SO, and S18O and 653 lines of SO2, 34SO2, 33SO2, SO18O and SO2 v2=1. We provide column densities for all of them and also upper limits for the column densities of S17O, 36SO, 34S18O, SO17O and 34SO2 v2=1 and for several undetected sulfur-bearing species. In addition, we present 2'x2' maps around Orion IRc2 of SO2 transitions with energies from 19 to 131 K and also maps with four transitions of SO, 34SO and 34SO2. We observe an elongation of the gas along the NE-SW direction. An unexpected emission peak appears at 20.5 km/s in most lines of SO and SO2. A study of the spatial distribution of this emission feature shows that it is a new component ~5" in diameter, which lies ~4" west of IRc2. We suggest the emission from this feature is related to shocks associated to the BN object. The highest column densities for SO and SO2 are found in the high-velocity plateau (a region dominated by shocks) and in the hot core. These values are up to three orders of magnitude higher than the results for the ridge components. We also find high column densities for their isotopologues in both components. Therefore, we conclude that SO and SO2 are good tracers, not only of regions affected by shocks, but also of regions with warm dense gas.Comment: Paper (ref AA/2013/21285) accepted for publication by A&A. 52 Pages, 26 figures, 13 table

    Spectroscopic characterization and detection of Ethyl Mercaptan in Orion

    Full text link
    New laboratory data of ethyl mercaptan, CH3_{3}CH2_{2}SH, in the millimeter and submillimeter-wave domains (up to 880 GHz) provided very precise values of the spectroscopic constants that allowed the detection of gauchegauche-CH3_3CH2_2SH towards Orion KL. 77 unblended or slightly blended lines plus no missing transitions in the range 80-280 GHz support this identification. A detection of methyl mercaptan, CH3_{3}SH, in the spectral survey of Orion KL is reported as well. Our column density results indicate that methyl mercaptan is \simeq 5 times more abundant than ethyl mercaptan in the hot core of Orion KL.Comment: Accepted for publication in ApJL (30 January 2014)/ submitted (8 January 2014

    CH2D+, the Search for the Holy Grail

    Full text link
    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.Comment: 25 pages, 6 Figures Accepted in Journal of Physical Chemistry A. "Oka Festschrift: Celebrating 45 years of Astrochemistry

    Improved determination of the 1(0)-0(0) rotational frequency of NH3D+ from the high resolution spectrum of the v4 infrared band

    Get PDF
    The high resolution spectrum of the v4 band of NH3D+ has been measured by difference frequency IR laser spectroscopy in a multipass hollow cathode discharge cell. From the set of molecular constants obtained from the analysis of the spectrum, a value of 262817(6) MHz (3sigma) has been derived for the frequency of the 1(0)-0(0) rotational transition. This value supports the assignment to NH3D+ of lines at 262816.7 MHz recorded in radio astronomy observations in Orion-IRc2 and the cold prestellar core B1-bS.Comment: Accepted for publication in the Astrophysical Journal Letters 04 June 201

    Aromatic cycles are widespread in cold clouds

    Full text link
    We report the detection of large hydrocarbon cycles toward several cold dense clouds. We observed four sources (L1495B, Lupus-1A, L483, and L1527) in the Q band (31-50 GHz) using the Yebes 40m radiotelescope. Using the line stack technique, we find statistically significant evidence of benzonitrile (C6_6H5_5CN) in L1495B, Lupus-1A, and L483 at levels of 31.8σ\,\sigma, 15.0σ\,\sigma, and 17.2σ\,\sigma, respectively, while there is no hint of C6_6H5_5CN in the fourth source, L1527. The column densities derived are in the range (1.7-3.8)×1011\,\times\,10^{11} cm2^{-2}, which is somewhat below the value derived toward the cold dense cloud TMC-1. When we simultaneously analyze all the benzonitrile abundances derived toward cold clouds in this study and in the literature, a clear trend emerges in that the higher the abundance of HC7_7N, the more abundant C6_6H5_5CN is. This indicates that aromatic cycles are especially favored in those interstellar clouds where long carbon chains are abundant, which suggests that the chemical processes that are responsible for the formation of linear carbon chains are also behind the synthesis of aromatic rings. We also searched for cycles other than benzonitrile, and found evidence of indene (C9_9H8_8), cyclopentadiene (C5_5H6_6), and 1-cyano cyclopentadiene (1-C5_5H5_5CN) at levels of 9.3σ\,\sigma, 7.5σ\,\sigma, and 8.4σ\,\sigma, respectively, toward L1495B, which shows the strongest signal from C6_6H5_5CN. The relative abundances between the various cycles detected in L1495B are consistent -- within a factor of three -- with those previously found in TMC-1. It is therefore likely that not only C6_6H5_5CN but also other large aromatic cycles are abundant in clouds rich in carbon chains.Comment: Accepted for publication in A&A Letters. Changes with respect to previous version: language edited, error in abstract corrected, and title change

    Tentative Detection of the Nitrosylium Ion in Space

    Full text link
    We report the tentative detection in space of the nitrosylium ion, NO+^+. The observations were performed towards the cold dense core Barnard 1-b. The identification of the NO+^+ JJ=2--1 line is supported by new laboratory measurements of NO+^+ rotational lines up to the JJ=8--7 transition (953207.189\,MHz), which leads to an improved set of molecular constants: B0=59597.1379(62)B_0 = 59597.1379(62)\,MHz, D0=169.428(65)D_0 = 169.428(65)\,kHz, and eQq0(N)=6.72(15)eQq_0(\textrm{N}) = -6.72(15)\,MHz. The profile of the feature assigned to NO+^+ exhibits two velocity components at 6.5 and 7.5 km s1^{-1}, with column densities of 1.5×10121.5 \times 10^{12} and 6.5×10116.5\times10^{11} cm2^{-2}, respectively. New observations of NO and HNO, also reported here, allow to estimate the following abundance ratios: XX(NO)/XX(NO+^+)511\simeq511, and XX(HNO)/XX(NO+^+)1\simeq1. This latter value provides important constraints on the formation and destruction processes of HNO. The chemistry of NO+^+ and other related nitrogen-bearing species is investigated by the means of a time-dependent gas phase model which includes an updated chemical network according to recent experimental studies. The predicted abundance for NO+^+ and NO is found to be consistent with the observations. However, that of HNO relative to NO is too high. No satisfactory chemical paths have been found to explain the observed low abundance of HNO. HSCN and HNCS are also reported here with an abundance ratio of 1\simeq1. Finally, we have searched for NNO, NO2_2, HNNO+^+, and NNOH+^+, but only upper limits have been obtained for their column density, except for the latter for which we report a tentative 3-σ\sigma detection.Comment: To appear in the Astrophysical Journal October 20, 201
    corecore