461 research outputs found
Functional composition of the Amazonian tree flora and forests
Plants cope with the environment by displaying large phenotypic variation. Two spectra of global plant form and function have been identified: a size spectrum from small to tall species with increasing stem tissue density, leaf size, and seed mass; a leaf economics spectrum reflecting slow to fast returns on investments in leaf nutrients and carbon. When species assemble to communities it is assumed that these spectra are filtered by the environment to produce community level functional composition. It is unknown what are the main drivers for community functional composition in a large area such as Amazonia. We use 13 functional traits, including wood density, seed mass, leaf characteristics, breeding system, nectar production, fruit type, and root characteristics of 812 tree genera (5211 species), and find that they describe two main axes found at the global scale. At community level, the first axis captures not only the ‘fast-slow spectrum’, but also most size-related traits. Climate and disturbance explain a minor part of this variance compared to soil fertility. Forests on poor soils differ largely in terms of trait values from those on rich soils. Trait composition and soil fertility exert a strong influence on forest functioning: biomass and relative biomass production
One sixth of Amazonian tree diversity is dependent on river floodplains
Amazonia’s floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region’s floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon’s tree diversity and its function
REGIONAL AND PHYLOGENETIC VARIATION OF WOOD DENSITY ACROSS 2456 NEOTROPICAL TREE SPECIES
Recommended from our members
Modelling the distribution of Amazonian tree species in response to long-term climate change during the mid-late Holocene
Aim
To (a) assess the environmental suitability for rainforest tree species of Moraceae and Urticaceae across Amazonia during the Mid‐Late Holocene and (b) determine the extent to which their distributions increased in response to long‐term climate change over this period.
Location
Amazonia.
Taxon
Tree species of Moraceae and Urticaceae.
Methods
We used MaxEnt and inverse distance weighting interpolation to produce environmental suitability and relative abundance models at 0.5‐degree resolution for tree species of Moraceae and Urticaceae, based on natural history collections and a large plot dataset. To test the response of the Amazon rainforest to long‐term climate change, we quantified the increase in environmental suitability and modelled species richness for both families since the Mid‐Holocene (past 6,000 years). To test the correlation between the relative abundance of these species in modern vegetation versus modern pollen assemblages, we analysed the surface pollen spectra from 46 previously published paleoecological sites.
Results
We found that the mean environmental suitability in Amazonia for species of Moraceae and Urticaceae showed a slight increase (6.5%) over the past 6,000 years, although southern ecotonal Amazonia and the Guiana Shield showed much higher increases (up to 68%). The accompanied modelled mean species richness increased by as much as 120% throughout Amazonia. The mean relative abundance of Moraceae and Urticaceae correlated significantly with the modern pollen assemblages for these families.
Main Conclusions
Increasing precipitation between the Mid‐ and Late Holocene expanded suitable environmental conditions for Amazonian humid rainforest tree species of Moraceae and Urticaceae, leading to rainforest expansion in ecotonal areas of Amazonia, consistent with previously published fossil pollen data
First‐Ever Complete List of Amazonian Timber Tree Species
We compiled and presented a dataset (named “MADERA”) for all timber species reported in the Amazon region from all nine South American Amazonian countries. This work was based on official information from every country and on two substantial scientific references. Our final Amazonian timber species dataset contains 1,112 unique species records, which belong to 337 genera and 72 families from the lowland Amazonian rainforest, with associated information related to population, conservation (IUCN Red list categories), and trade status (ITTO/CITES) of each species. The authors of this research expect that the information provided will be useful to strengthen sustainable forest management and scientific research in the Amazonian region
Floristic overview of the epiphytic bryophytes of terra firme forests across the Amazon basin
Recommended from our members
Rarity of monodominance in hyperdiverse Amazonian forests.
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors
- …