2 research outputs found

    Swallow-Tailed Alkyl and Linear Alkoxy-Substituted Dibenzocoronene Tetracarboxdiimide Derivatives: Synthesis, Photophysical Properties, and Thermotropic Behaviors

    No full text
    A series of dibenzocoronene tetracarboxdiimide derivatives decorated with alkyl swallow-tail and alkoxy moieties were synthesized, and their structures were characterized. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an effective oxidant was first used in the benzannulation of perylene diimides with the almost quantitative yield. The thermotropic behavior was investigated using differential scanning calorimetry (DSC) and polarization optical microscopy (POM). The introduction of alkyl swallow-tail and alkoxy substituents facilitates thermotropic liquid crystalline behavior. The branching site of alkyl swallow-tail units at the α position and the longer alkoxy chains played a similar role in lowering the mesophase transition as well as isotropization transition temperatures. The UV–vis absorption spectra of all compounds appeared as absorption in 425–600 nm region, and POM images of certain compounds exhibited characteristic columnar hexagonal (Col<sub>h</sub>) packing and readily self-assembled into a homeotropic alignment toward the substrate

    Highly Stretchable and Transparent Thermistor Based on Self-Healing Double Network Hydrogel

    No full text
    An ultrastretchable thermistor that combines intrinsic stretchability, thermal sensitivity, transparency, and self-healing capability is fabricated. It is found the polyacrylamide/carrageenan double network (DN) hydrogel is highly sensitive to temperature and therefore can be exploited as a novel channel material for a thermistor. This thermistor can be stretched from 0 to 330% strain with the sensitivity as high as 2.6%/°C at extreme 200% strain. Noticeably, the mechanical, electrical, and thermal sensing properties of the DN hydrogel can be self-healed, analogous to the self-healing capability of human skin. The large mechanical deformations, such as flexion and twist with large angles, do not affect the thermal sensitivity. Good flexibility enables the thermistor to be attached on nonplanar curvilinear surfaces for practical temperature detection. Remarkably, the thermal sensitivity can be improved by introducing mechanical strain, making the sensitivity programmable. This thermistor with tunable sensitivity is advantageous over traditional rigid thermistors that lack flexibility in adjusting their sensitivity. In addition to superior sensitivity and stretchability compared with traditional thermistors, this DN hydrogel-based thermistor provides additional advantages of good transparency and self-healing ability, enabling it to be potentially integrated in soft robots to grasp real world information for guiding their actions
    corecore