12 research outputs found

    Ultrafast and Low Temperature Synthesis of Highly Crystalline and Patternable Few-Layers Tungsten Diselenide by Laser Irradiation Assisted Selenization Process

    No full text
    Recently, a few attempts to synthesize monolayers of transition metal dichalcogenides (TMDs) using the chemical vapor deposition (CVD) process had been demonstrated. However, the development of alternative processes to synthesize TMDs is an important step because of the time-consuming, required transfer and low thermal efficiency of the CVD process. Here, we demonstrate a method to achieve few-layers WSe<sub>2</sub> on an insulator <i>via</i> laser irradiation assisted selenization (LIAS) process directly, for which the amorphous WO<sub>3</sub> film undergoes a reduction process in the presence of selenium gaseous vapors to form WSe<sub>2</sub>, utilizing laser annealing as a heating source. Detailed growth parameters such as laser power and laser irradiation time were investigated. In addition, microstructures, optical and electrical properties were investigated. Furthermore, a patternable WSe<sub>2</sub> concept was demonstrated by patterning the WO<sub>3</sub> film followed by the laser irradiation. By combining the patternable process, the transfer-free WSe<sub>2</sub> back gate field effect transistor (FET) devices are realized on 300 nm-thick SiO<sub>2</sub>/P<sup>+</sup>Si substrate with extracted field effect mobility of ∼0.2 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>. Similarly, the reduction process by the laser irradiation can be also applied for the synthesis of other TMDs such as MoSe<sub>2</sub> from other metal oxides such as MO<sub>3</sub> film, suggesting that the process can be further extended to other TMDs. The method ensures one-step process to fabricate patternable TMDs, highlighting the uniqueness of the laser irradiation for the synthesis of different TMDs

    Tunable Multilevel Storage of Complementary Resistive Switching on Single-Step Formation of ZnO/ZnWO<sub><i>x</i></sub> Bilayer Structure via Interfacial Engineering

    No full text
    Tunable multilevel storage of complementary resistive switching (CRS) on single-step formation of ZnO/ZnWO<sub><i>x</i></sub> bilayer structure via interfacial engineering was demonstrated for the first time. In addition, the performance of the ZnO/ZnWO<sub><i>x</i></sub>-based CRS device with the voltage- and current-sweep modes was demonstrated and investigated in detail. The resistance switching behaviors of the ZnO/ZnWO<sub><i>x</i></sub> bilayer ReRAM with adjustable RESET-stop voltages was explained using an electrochemical redox reaction model whose electron-hopping activation energies of 28, 40, and 133 meV can be obtained from Arrhenius equation at RESET-stop voltages of 1.0, 1.3, and 1.5 V, respectively. In the case of the voltage-sweep operation on the ZnO-based CRS device, the maximum array numbers (<i>N</i>) of 9, 15, and 31 at RESET-stop voltages of 1.4, 1.5, and 1.6 V were estimated, while the maximum array numbers increase into 47, 63, and 105 at RESET-stop voltages of 2.0, 2.2, and 2.4 V, operated by the current-sweep mode, respectively. In addition, the endurance tests show a very stable multilevel operation at each RESET-stop voltage under the current-sweep mode

    Additional file 1 of Three-Dimensional CuO/TiO2 Hybrid Nanorod Arrays Prepared by Electrodeposition in AAO Membranes as an Excellent Fenton-Like Photocatalyst for Dye Degradation

    No full text
    Additional file 1: Figure S1. Cross-section SEM image of 6.53 μm long CuO NRs in AAO (scale bar: 1 μm). Figure S2. XRD spectrum of TiO2 capping CuO NRs annealed at 600°C, over the 2θ ranges of 25°-29°. Figure S3. Degradation results of different TiO2 thickness annealed at 500 °C capping 1.85 μm long CuO NR arrays

    Transfer-Free Growth of Atomically Thin Transition Metal Disulfides Using a Solution Precursor by a Laser Irradiation Process and Their Application in Low-Power Photodetectors

    No full text
    Although chemical vapor deposition is the most common method to synthesize transition metal dichalcogenides (TMDs), several obstacles, such as the high annealing temperature restricting the substrates used in the process and the required transfer causing the formation of wrinkles and defects, must be resolved. Here, we present a novel method to grow patternable two-dimensional (2D) transition metal disulfides (MS<sub>2</sub>) directly underneath a protective coating layer by spin-coating a liquid chalcogen precursor onto the transition metal oxide layer, followed by a laser irradiation annealing process. Two metal sulfides, molybdenum disulfide (MoS<sub>2</sub>) and tungsten disulfide (WS<sub>2</sub>), are investigated in this work. Material characterization reveals the diffusion of sulfur into the oxide layer prior to the formation of the MS<sub>2</sub>. By controlling the sulfur diffusion, we are able to synthesize continuous MS<sub>2</sub> layers beneath the top oxide layer, creating a protective coating layer for the newly formed TMD. Air-stable and low-power photosensing devices fabricated on the synthesized 2D WS<sub>2</sub> without the need for a further transfer process demonstrate the potential applicability of TMDs generated via a laser irradiation process

    Plasma-Assisted Synthesis of High-Mobility Atomically Layered Violet Phosphorus

    No full text
    Two-dimensional layered materials such as graphene, transition metal dichalcogenides, and black phosphorus have demonstrated outstanding properties due to electron confinement as the thickness is reduced to atomic scale. Among the phosphorus allotropes, black phosphorus, and violet phosphorus possess layer structure with the potential to be scaled down to atomically thin film. For the first time, the plasma-assisted synthesis of atomically layered violet phosphorus has been achieved. Material characterization supports the formation of violet phosphorus/InN over InP substrate where the layer structure of violet phosphorus is clearly observed. The identification of the crystal structure and lattice constant ratifies the formation of violet phosphorus indeed. The critical concept of this synthesis method is the selective reaction induced by different variations of Gibbs free energy (Δ<i>G</i>) of reactions. Besides, the Hall mobility of the violet phosphorus on the InP substrate greatly increases over the theoretical values of InP bulk material without much reduction in the carrier concentration, suggesting that the mobility enhancement results from the violet phosphorus layers. Furthermore, this study demonstrates a low-cost technique with high compatibility to synthesize the high-mobility atomically layered violet phosphorus and open the space for the study of the fundamental properties of this intriguing material as a new member of the fast growing family of 2D crystals

    Environmentally and Mechanically Stable Selenium 1D/2D Hybrid Structures for Broad-Range Photoresponse from Ultraviolet to Infrared Wavelengths

    No full text
    Selenium (Se) is one of the potential candidates as photodetector because of its outstanding properties such as high photoconductivity (∼8 × 104 S cm–1), piezoelectricity, thermoelectricity, and nonlinear optical responses. Solution phase synthesis becomes an efficient way to produce Se, but a contamination issue that could deteriorate the electric characteristic of Se should be taken into account. In this work, a facile, controllable approach of synthesizing Se nanowires (NWs)/films via a plasma-assisted growth process was demonstrated at the low substrate temperature of 100 °C. The detailed formation mechanisms of nanowires arrays to thin films at different plasma powers were investigated. Moreover, indium (In) layer was used to enhance the adhesive strength with 50% improvement on a SiO2/Si substrate by mechanical interlocking and surface alloying between Se and In layers, indicating great tolerance for mechanical stress for future wearable devices applications. Furthermore, the direct growth of Se NWs/films on a poly­(ethylene terephthalate) substrate was demonstrated, exhibiting a visible to broad infrared detection ranges from 405 to 1555 nm with a high on/off ratio of ∼700 as well as the fast response time less than 25 ms. In addition, the devices exhibited fascinating stability in the atmosphere over one month

    Environmentally and Mechanically Stable Selenium 1D/2D Hybrid Structures for Broad-Range Photoresponse from Ultraviolet to Infrared Wavelengths

    No full text
    Selenium (Se) is one of the potential candidates as photodetector because of its outstanding properties such as high photoconductivity (∼8 × 104 S cm–1), piezoelectricity, thermoelectricity, and nonlinear optical responses. Solution phase synthesis becomes an efficient way to produce Se, but a contamination issue that could deteriorate the electric characteristic of Se should be taken into account. In this work, a facile, controllable approach of synthesizing Se nanowires (NWs)/films via a plasma-assisted growth process was demonstrated at the low substrate temperature of 100 °C. The detailed formation mechanisms of nanowires arrays to thin films at different plasma powers were investigated. Moreover, indium (In) layer was used to enhance the adhesive strength with 50% improvement on a SiO2/Si substrate by mechanical interlocking and surface alloying between Se and In layers, indicating great tolerance for mechanical stress for future wearable devices applications. Furthermore, the direct growth of Se NWs/films on a poly­(ethylene terephthalate) substrate was demonstrated, exhibiting a visible to broad infrared detection ranges from 405 to 1555 nm with a high on/off ratio of ∼700 as well as the fast response time less than 25 ms. In addition, the devices exhibited fascinating stability in the atmosphere over one month

    Selection Role of Metal Oxides into Transition Metal Dichalcogenide Monolayers by a Direct Selenization Process

    No full text
    Direct reduction of metal oxides into a few transition metal dichalcogenide (TMDCs) monolayers has been recently explored as an alternative method for large area and uniform deposition. However, not many studies have addressed the characteristics and requirement of the metal oxides into TMDCs by the selenization/sulfurization processes, yielding a wide range of outstanding properties to poor electrical characteristics with nonuniform films. The large difference implies that the process is yet not fully understood. In particular, the selenization/sulfurization at low temperature leads to poor crystallinity films with poor electrical performance, hindering its practical development. A common approach to improve the quality of the selenized/sulfurized films is by further increasing the process temperature, thus requiring additional transfer in order to explore the electrical properties. Here, we show that by finely tuning the quality of the predeposited oxide the selenization/sulfurization temperature can be largely decreased, avoiding major substrate damage and allowing direct device fabrication. The direct relationship between the role of selecting different metal oxides prepared by e-beam evaporation and reactive sputtering and their oxygen deficiency/vacancy leading to quality influence of TMDCs was investigated in detail. Because of its outstanding physical properties, the formation of tungsten diselenide (WSe2) from the reduction of tungsten oxide (WOx) was chosen as a model for proof of concept. By optimizing the process parameters and the selection of metal oxides, layered WSe2 films with controlled atomic thickness can be demonstrated. Interestingly, the domain size and electrical properties of the layered WSe2 films are highly affected by the quality of the metal oxides, for which the layered WSe2 film with small domains exhibits a metallic behavior and the layered WSe2 films with larger domains provides clear semiconducting behavior. Finally, an 8′′ wafer scale-layered WSe2 film was demonstrated, giving a step forward in the development of 2D TMDC electronics in the industry

    Additional file 1: of 3D CoMoSe4 Nanosheet Arrays Converted Directly from Hydrothermally Processed CoMoO4 Nanosheet Arrays by Plasma-Assisted Selenization Process Toward Excellent Anode Material in Sodium-Ion Battery

    No full text
    Figure S1. SEM-energy dispersive spectra (EDS) of (a) CoMoO4@C and (b) CoMoSe4@C. Figure S2. Raman spectra of (a) CoMoO4 before and after the plasma-assisted selenization process without plasma treatment and (b) CoMoO4 before and after the plasma-assisted selenization process with plasma treatment. Figure S3. XRD spectra of (a) CoMoO4 and (b) CoMoSe4 nanosheet arrays. Figure S4. Cycling performance of pure carbon cloth. Figure S5. (a) Cyclic voltammograms and (b) discharge/charge profiles of the CoMoO4@C. Figure S6. EIS of CoMoSe4@C and CoMoO4@C. (DOCX 357 kb
    corecore