26 research outputs found

    Anomaly-free Model Building with Algebraic Geometry

    Full text link
    We present a method to find anomaly-free gauged Froggatt-Nielsen type models using results from algebraic geometry. These methods should be of general interest for model building beyond the Standard Model (SM) when rational charges are required. We consider models with a gauged U(1)U(1) flavor symmetry with one flavon and two Higgs doublets and three right-handed SM singlets to provide three model examples based on different physical assumptions. The models we study are: anomaly-free with no SM neutral heavy chiral fermions, anomaly-free with SM neutral heavy chiral fermions, and supersymmetric with SM neutral heavy chiral fermions where the anomalies cancel via the Green-Schwarz mechanism. With these different models we show how algebraic methods may be used in model building; both to reduce the charge constraints by calculation of Gr\"obner bases, and to find rational solutions to cubic equations using Mordell-Weil generators. Using these tools we find three phenomenologically viable models explaining the observed flavor structure.Comment: Changed to match published versio

    Tertiary particle production and target optimization of the H2 beam line in the SPS North Area

    Full text link
    In this note, the tertiary particle yield from secondary targets of different materials placed at the 'filter' position of the H2 beam line of SPS North Area are presented. The production is studied for secondary beams of different momenta in the range of 50-250 GeV/c. More specifically, we studied six different targets: two copper cylinders with a radius of 40 mm and lengths of 100 and 300 mm, one solid tungsten cylinder with a radius of 40 mm and a length of 150 mm and three polyethylene cylinders with radius of 40 mm and lengths of 550, 700 and 1000 mm. Eight different momenta of the secondary beam (50, 60, 70, 100, 120, 150, 200 and 250 GeV/c) as well as two different physics lists (QGSP_BIC and FTFP_BERT) have been extensively studied. The purpose of this study is (a) to optimize (using the appropriate filter target) the particle production from the secondary targets as demanded by the experiments (b) investigate the proton production (with respect to the pion production) in the produced tertiary beams, a fact interesting for cross-section measuring experiments (e.g. NA61), (c) provide an expected beam-composition database for each target and energy that will act as a reference for the test-beam users of the North Area and (d) demonstrate the differences between the different GEANT-4 physics lists. Moreover this work constitutes a starting point for a more detailed benchmark of the different available Monte-Carlo models and codes in this momentum range

    UV-complete Gauged Anomaly-free U(1) Froggatt-Nielsen Model

    Full text link
    We investigate the possibility of understanding all fermion masses and mixings within a gauged Froggatt-Nielsen framework. Continuing the work from [J. Rathsman and F. Tellander, Phys. Rev. D \textbf{100}, 055032 (2019)] we especially focus on a UV completion of this type of models. Independent of the UV completion, we construct an anomaly-free two Higgs doublet model with a gauged U(1)FU(1)_F flavor symmetry and three right-handed neutrinos explaining all observed masses and mixings in the fermion sector. We then investigate two different UV completions: one through fermions and one through scalars. The fermion completion has low lying Landau poles in the gague couplings while the scalar completion is viable up to the gravity scale.Comment: 13 pages, 2 figure

    Landau Singularities from Whitney Stratifications

    Full text link
    We demonstrate that the complete and non-redundant set of Landau singularities of Feynman integrals may be explicitly obtained from the Whitney stratification of an algebraic map. As a proof of concept, we leverage recent theoretical and algorithmic advances in their computation, as well as their software implementation, in order to determine this set for several nontrivial examples of two-loop integrals. Interestingly, different strata of the Whitney stratification describe not only the singularities of a given integral, but also those of integrals obtained from kinematic limits, e.g.~by setting some of its masses or momenta to zero.Comment: 7 pages, 6 figure

    On the Uniqueness Problem for Quadrature Domains

    Full text link
    We study questions of existence and uniqueness of quadrature domains using computational tools from real algebraic geometry. These problems are transformed into questions about the number of solutions to an associated real semi-algebraic system, which is analyzed using the method of real comprehensive triangular decomposition

    Tropical Feynman integration in the physical region

    Full text link
    The software feyntrop for direct numerical evaluation of Feynman integrals is presented. We focus on the underlying combinatorics and polytopal geometries facilitating these methods. Especially matroids, generalized permutohedra and normality are discussed in detail.Comment: 9 pages, 3 figures, EPS-HEP 2023 proceeding

    Student Session

    No full text

    Tertiary particle production and target optimization of the H2 beam line in the SPS North Area

    No full text
    H2 beam line of SPS North Area is a high energy, high resolution and multipurpose particle beam line. It is able to transport secondary hadron and pure electron beams with momenta between 10 and 400 GeV/c to be exploited by several different experiments. In this work, tertiary particle production from a secondary target placed in the line is studied. The introduction of this “filter” target enhances the middle to low momentum hadron (20 - 60 GeV/c) and electron production. In this work, a systematic Monte Carlo simulation study using a GEANT 4 based package, G4beamline, has been performed in order to investigate the tertiary particle production from several different targets. More specifically, Cu, W and polyethylene targets with different thicknesses have been studied. The proton over pi+ ratio is of particular interest, as well as the optimal electron production for several momenta. The present work will act as a reference to be used by the future test-beam users of the line as an indication of the expected particle composition and rates in their experimental setups

    The 't Hooft model as a testing ground for Quantum Chromodynamics

    No full text
    We study a 1+1 dimensional Yang-Mills model in the light-cone gauge (the ’t Hooft model). The colour group is SU (N ) and we study the limit N → ∞, the limit is taken such that gÂČN is kept constant. In this limit the only contributing diagrams are planar diagrams without gluon-gluon interactions. Using this, it is shown that there are no free quarks in this model. The bound state wave equation is derived which gives the meson masses and light-cone momentum space wave functions for the model. From this the decay amplitudes are calculated and we show that the model is not integrable and that the pion (massless meson) decouples. We also calculate the form factors which qualitatively show the charge distribution inside the meson.Allt vi ser Ă€r uppbyggt av smĂ„ partiklar som vi kallar atomer. Men atomerna Ă€r inte fundamentala, de bestĂ„r av Ă€nnu mindre partiklar och faktiskt, Ă€r de mesta av dem tomrum. En atom har liknande struktur som vĂ„rt solsystem, det finns en mycket tung kĂ€rna i mitten (solen) och lĂ€ttare elektroner som kretsar runt den (planeterna). Mellan kĂ€rnan och elektronerna finns mestadels tomrum, precis som i vĂ„rt solsystem. SĂ„vitt vi vet Ă€r elektronerna fundamentalpartiklar och bestĂ„r dĂ€rför inte av nĂ„got mindre. KĂ€rnan Ă„ andra sidan, bestĂ„r av protoner och neutroner och de i sin tur bestĂ„r av nĂ„got som kallas kvarkar. Den lĂ€ngdskala Ă€r pĂ„ Ă€r otroligt liten, radien av en proton Ă€r ungefĂ€r 10⁻Âč⁔ meter vilket Ă€r av samma storleksordning som om du tar bredden pĂ„ ett hĂ„rstrĂ„ och dela upp den i 500 miljoner bitar. Den gren av fysiken som behandlar dessa smĂ„ partiklar och lĂ€ngder Ă€r partikelfysik och det Ă€r till detta omrĂ„de som den hĂ€r uppsatsen tillhör. För att förstĂ„ detta arbete mĂ„ste vi först gĂ„ igenom nĂ„gra grundlĂ€ggande koncept inom partikelfysik. Om du tar din mobiltelefon och kasta den sĂ„ kommer den sĂ„ smĂ„ningom störta i marken. Den kraft som drar ner telefonen Ă€r tyngdkraften. Detta Ă€r samma kraft som hĂ„ller jorden i sin bana runt solen. För att fortsĂ€tta vĂ„r analogi mellan atomen och solsystemet behöver vi en kraft som hĂ„ller elektronerna i omloppsbana runt kĂ€rnan. Denna kraft Ă€r den elektromagnetiska kraften och som uppkommer eftersom elektronerna och kĂ€rnan har olika elektrisk laddning. Vi sĂ€ger att kĂ€rnan har positiv laddning och en elektron negativ laddning, elektromagnetism fungerar sĂ„ att olika laddning attraherar och samma laddningar repellerar. De olika delarna av atomen hĂ„lls alltsĂ„ samman av den elektromagnetiska kraften. Men vi sade att kĂ€rnan Ă€r sammansatt av Ă€nnu mindre partiklar, mest fundamentalt av kvarkarna. KĂ€rnan hĂ„lls inte samman av den elektromagnetiska kraften, utan i sjĂ€lva verket finns det sĂ„ mycket positiv laddning i kĂ€rnan att den elektromagnetiska kraften försöker bryta isĂ€r den. Kraften som hĂ„lla ihop kvarkarna Ă€r den starka kraften, den har fĂ„tt sitt namn eftersom den Ă€r den starkaste kraft vi kĂ€nner till. Liksom för den elektromagnetiska kraften finns det laddningar associerade med denna kraft. VĂ€xelverkan mellan kvarkar beskrivs med kvantkromodynamik, QCD, dĂ€r det finns tre laddningar associerade med den starka kraften: grön. röd och blĂ„. Den modell vi anvĂ€nder i det hĂ€r arbetet för att beskriva kvarkarnas vĂ€xelverkan Ă€r 't Hooft-modellen. Denna modell beskriver interaktionerna mellan kvarkarna men med vissa förenklande antaganden jĂ€mfört med QCD. I 't Hooft-modellen antar vi att antalet fĂ€rgladdningar Ă€r mycket stort, vi antar faktiskt att det Ă€r oĂ€ndligt. Vi kommer ocksĂ„ att anta att det bara finns en rumsdimension, inte tre som i den verkliga vĂ€rlden. Under dessa antaganden har jag berĂ€knat massan av mesoner, dessa Ă€r partiklar som bestĂ„r av tvĂ„ kvarkar. Mesoner har totalt ingen elektrisk laddning, men kvarkarna har, och dĂ€rför studera vi hur den elektriska laddningen Ă€r fördelad inuti meson. Ett kvalitativt sĂ€tt att studera detta Ă€r att berĂ€kna de elektromagnetiska formfaktorerna, dessa Ă€r ocksĂ„ möjliga att mĂ€ta experimentellt. Partiklar som mesoner Ă€r i allmĂ€nhet inte Ă€r stabila utan kommer sönderfalla till andra partiklar. Den tid det tar för dem att sönderfalla och vilka partiklar de sönderfaller till styrs av partiklarna sönderfalls amplituder. Dessa kan, precis som mesonernas massa och formfaktorerna, jĂ€mföras med experimentella data
    corecore