21 research outputs found
Direct Measurement of Thermal Fluctuation of High-Q Pendulum
We achieved for the first time a direct measurement of the thermal
fluctuation of a pendulum in an off-resonant region using a laser
interferometric gravitational wave detector. These measurements have been well
identified for over one decade by an agreement with a theoretical prediction,
which was derived by a fluctuation-dissipation theorem. Thermal fluctuation is
dominated by the contribution of resistances in coil-magnet actuator circuits.
When we tuned these resistances, the noise spectrum also changed according to a
theoretical prediction. The measured thermal noise level corresponds to a high
quality factor on the order of 10^5 of the pendulum.Comment: 10 pages, 4 figure
Thermal-noise-limited underground interferometer CLIO
We report on the current status of CLIO (Cryogenic Laser Interferometer
Observatory), which is a prototype interferometer for LCGT (Large Scale
Cryogenic Gravitational-Wave Telescope). LCGT is a Japanese next-generation
interferometric gravitational wave detector featuring the use of cryogenic
mirrors and a quiet underground site. The main purpose of CLIO is to
demonstrate a reduction of the mirror thermal noise by cooling the sapphire
mirrors. CLIO is located in an underground site of the Kamioka mine, 1000 m
deep from the mountain top, to verify its advantages. After a few years of
commissioning work, we have achieved a thermal-noise-limited sensitivity at
room temperature. One of the main results of noise hunting was the elimination
of thermal noise caused by a conductive coil-holder coupled with a pendulum
through magnets.Comment: 10 pages, 6 figures, Proceedings of the 8th Edoardo Amaldi Conference
on Gravitational Wave
Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector
The thermal fluctuation of mirror surfaces is the fundamental limitation for
interferometric gravitational wave (GW) detectors. Here, we experimentally
demonstrate for the first time a reduction in a mirror's thermal fluctuation in
a GW detector with sapphire mirrors from the Cryogenic Laser Interferometer
Observatory at 17\,K and 18\,K. The detector sensitivity, which was limited by
the mirror's thermal fluctuation at room temperature, was improved in the
frequency range of 90\,Hz to 240\,Hz by cooling the mirrors. The improved
sensitivity reached a maximum of at 165\,Hz.Comment: Accepted for publication in Physical Review Letters, 5 pages, 2
figure
Ultra-stable performance of an underground-based laser interferometer observatory for gravitational waves
In order to detect the rare astrophysical events that generate gravitational
wave (GW) radiation, sufficient stability is required for GW antennas to allow
long-term observation. In practice, seismic excitation is one of the most
common disturbances effecting stable operation of suspended-mirror laser
interferometers. A straightforward means to allow more stable operation is
therefore to locate the antenna, the ``observatory'', at a ``quiet'' site. A
laser interferometer gravitational wave antenna with a baseline length of 20m
(LISM) was developed at a site 1000m underground, near Kamioka, Japan. This
project was a unique demonstration of a prototype laser interferometer for
gravitational wave observation located underground. The extremely stable
environment is the prime motivation for going underground. In this paper, the
demonstrated ultra-stable operation of the interferometer and a well-maintained
antenna sensitivity are reported.Comment: 8 pages, to appear on PR
Current status of Japanese detectors
Current status of TAMA and CLIO detectors in Japan is reported in this
article. These two interferometric gravitational-wave detectors are being
developed for the large cryogenic gravitational wave telescope (LCGT) which is
a future plan for detecting gravitational wave signals at least once per year.
TAMA300 is being upgraded to improve the sensitivity in low frequency region
after the last observation experiment in 2004. To reduce the seismic noises, we
are installing new seismic isolation system, which is called TAMA Seismic
Attenuation System, for the four test masses. We confirmed stable mass locks of
a cavity and improvements of length and angular fluctuations by using two SASs.
We are currently optimizing the performance of the third and fourth SASs. We
continue TAMA300 operation and R&D studies for LCGT. Next data taking in the
summer of 2007 is planned.
CLIO is a 100-m baseline length prototype detector for LCGT to investigate
interferometer performance in cryogenic condition. The key features of CLIO are
that it locates Kamioka underground site for low seismic noise level, and
adopts cryogenic Sapphire mirrors for low thermal noise level. The first
operation of the cryogenic interferometer was successfully demonstrated in
February of 2006. Current sensitivity at room temperature is close to the
target sensitivity within a factor of 4. Several observation experiments at
room temperature have been done. Once the displacement noise reaches at thermal
noise level of room temperature, its improvement by cooling test mass mirrors
should be demonstrated.Comment: 6 pages, 5 figures, Proceedings of GWDAW-1
Coincidence analysis to search for inspiraling compact binaries using TAMA300 and LISM data
Japanese laser interferometric gravitational wave detectors, TAMA300 and
LISM, performed a coincident observation during 2001. We perform a coincidence
analysis to search for inspiraling compact binaries. The length of data used
for the coincidence analysis is 275 hours when both TAMA300 and LISM detectors
are operated simultaneously. TAMA300 and LISM data are analyzed by matched
filtering, and candidates for gravitational wave events are obtained. If there
is a true gravitational wave signal, it should appear in both data of detectors
with consistent waveforms characterized by masses of stars, amplitude of the
signal, the coalescence time and so on. We introduce a set of coincidence
conditions of the parameters, and search for coincident events. This procedure
reduces the number of fake events considerably, by a factor
compared with the number of fake events in single detector analysis. We find
that the number of events after imposing the coincidence conditions is
consistent with the number of accidental coincidences produced purely by noise.
We thus find no evidence of gravitational wave signals. We obtain an upper
limit of 0.046 /hours (CL ) to the Galactic event rate within 1kpc from
the Earth. The method used in this paper can be applied straightforwardly to
the case of coincidence observations with more than two detectors with
arbitrary arm directions.Comment: 28 pages, 17 figures, Replaced with the version to be published in
Physical Review
Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000-2004
We analyze the data of TAMA300 detector to search for gravitational waves
from inspiraling compact star binaries with masses of the component stars in
the range 1-3Msolar. In this analysis, 2705 hours of data, taken during the
years 2000-2004, are used for the event search. We combine the results of
different observation runs, and obtained a single upper limit on the rate of
the coalescence of compact binaries in our Galaxy of 20 per year at a 90%
confidence level. In this upper limit, the effect of various systematic errors
such like the uncertainty of the background estimation and the calibration of
the detector's sensitivity are included.Comment: 8 pages, 4 Postscript figures, uses revtex4.sty The author list was
correcte
Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses
We present data-analysis schemes and results of observations with the TAMA300
gravitational-wave detector, targeting burst signals from stellar-core collapse
events. In analyses for burst gravitational waves, the detection and
fake-reduction schemes are different from well-investigated ones for a
chirp-wave analysis, because precise waveform templates are not available. We
used an excess-power filter for the extraction of gravitational-wave
candidates, and developed two methods for the reduction of fake events caused
by non-stationary noises of the detector. These analysis schemes were applied
to real data from the TAMA300 interferometric gravitational wave detector. As a
result, fake events were reduced by a factor of about 1000 in the best cases.
The resultant event candidates were interpreted from an astronomical viewpoint.
We set an upper limit of 2.2x10^3 events/sec on the burst gravitational-wave
event rate in our Galaxy with a confidence level of 90%. This work sets a
milestone and prospects on the search for burst gravitational waves, by
establishing an analysis scheme for the observation data from an
interferometric gravitational wave detector
Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within our Galaxy
TAMA300, an interferometric gravitational-wave detector with 300-m baseline
length, has been developed and operated with sufficient sensitivity to detect
gravitational-wave events within our galaxy and sufficient stability for
observations; the interferometer was operated for over 10 hours stably and
continuously. With a strain-equivalent noise level of , a signal-to-noise ratio (SNR) of 30 is expected for
gravitational waves generated by a coalescence of 1.4 -1.4
binary neutron stars at 10 kpc distance. %In addition, almost all noise sources
which limit the sensitivity and which %disturb the stable operation have been
identified. We evaluated the stability of the detector sensitivity with a
2-week data-taking run, collecting 160 hours of data to be analyzed in the
search for gravitational waves.Comment: 5 pages, 4 figure
Crustal Strain Observation Using a Two-Color Interferometer with Accurate Correction of Refractive Index of Air
A highly accurate two-color interferometer with automatic correction of the refractive index of air was developed for crustal strain observation. The two-color interferometer, which can measure a geometrical distance of approximately 70 m, with a relative resolution of 2 × 10−9, clearly detected a change in strain due to earth tides in spite of optical measurement in air. Moreover, a large strain quake due to an earthquake could be observed without disturbing the measurement. We demonstrated the advantages of the two-color interferometer in air for geodetic observation