4,059 research outputs found

    Reionization and Cosmology with 21 cm Fluctuations

    Full text link
    Measurement of the spatial distribution of neutral hydrogen via the redshifted 21 cm line promises to revolutionize our knowledge of the epoch of reionization and the first galaxies, and may provide a powerful new tool for observational cosmology from redshifts 1<z<4 . In this review we discuss recent advances in our theoretical understanding of the epoch of reionization (EoR), the application of 21 cm tomography to cosmology and measurements of the dark energy equation of state after reionization, and the instrumentation and observational techniques shared by 21 cm EoR and post reionization cosmology machines. We place particular emphasis on the expected signal and observational capabilities of first generation 21 cm fluctuation instruments.Comment: Invited review for Annual Review of Astronomy and Astrophysics (2010 volume

    In-situ thermally-reduced graphene oxide/epoxy composites: thermal and mechanical properties

    Get PDF
    Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome in order to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix. In the present work we report the thermal and mechanical properties of reduced graphene oxide/epoxy composites prepared via a facile, scalable and commercially-viable method. Electron micrographs of the composites demonstrate that the reduced graphene oxide (rGO) is well-dispersed throughout the composite. Although no improvements in glass transition temperature, tensile strength, and thermal stability in air of the composites were observed, good improvements in thermal conductivity (about 36%), tensile and storage moduli (more than 13%) were recorded with the addition of 2 wt% of rGO

    Investigating the Effects of Finite Resolution on Observed Transverse Jet Profiles

    Full text link
    Both the emission properties and evolution of Active Galactic Nuclei (AGN) radio jets are dependent on the magnetic fields that thread them. Faraday Rotation gradients are a very important way of investigating these magnetic fields, and can provide information on the orientation and structure of the magnetic field in the immediate vicinity of the jet; for example, a toroidal or helical field component should give rise to a systematic gradient in the observed Faraday rotation across the jet, as well as characteristic intensity and polarization profiles. However, real observed radio images have finite resolution, usually expressed via convolution with a Gaussian beam whose size corresponds to the central lobe of the point source response function. This will tend to blur transverse structure in the jet profile, raising the question of how well resolved a jet must be in the transverse direction in order to reliably detect transverse structure associated with a helical jet magnetic field. We present results of simulated intensity, polarization and Faraday rotation images designed to directly and empirically investigate the effect of finite resolution on observed transverse jet structures

    Movement patterns and athletic performance of leopards in the Okavango Delta

    Get PDF
    Although leopards are the most widespread of all the big cats and are known for their adaptability, they are elusive and little is known in detail about their movement and hunting energetics. We used high-resolution GPS/IMU (inertial measurement unit) collars to record position, activity and the first high-speed movement data on four male leopards in the Okavango Delta, an area with high habitat diversity and habitat fragmentation. Leopards in this study were generally active and conducted more runs during the night, with peaks in activity and number of runs in the morning and evening twilight. Runs were generally short (less than 100 m) and relatively slow (maximum speed 5.3 m s−1, mean of individual medians) compared to other large predators. Average daily travel distance was 11 km and maximum daily travel distance was 29 km. No direct correlation was found between average daily temperature and travel distance or between season and travel distance. Total daily energy requirements based on locomotor cost and basal metabolic rate varied little between individuals and over time. This study provides novel insights into movement patterns and athletic performance of leopards through quantitative high-resolution measurement of the locomotor, energetic, spatial and temporal movement characteristics. The results are unbiased by methodological and observational limitations characteristic of previous studies and demonstrate the utility of applying new technologies to field studies of elusive nocturnal species

    Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems

    Get PDF
    Bacteria commonly exist in high cell density populations, making them prone to viral predation and horizontal gene transfer (HGT) through transformation and conjugation. To combat these invaders, bacteria possess an arsenal of defenses, such as CRISPR-Cas adaptive immunity. Many bacterial populations coordinate their behavior as cell density increases, using quorum sensing (QS) signaling. In this study, we demonstrate that QS regulation results in increased expression of the type I-E, I-F, and III-A CRISPR-Cas systems in Serratia\textit{Serratia} cells in high-density populations. Strains unable to communicate via QS were less effective at defending against invaders targeted by any of the three CRISPR-Cas systems. Additionally, the acquisition of immunity by the type I-E and I-F systems was impaired in the absence of QS signaling. We propose that bacteria can use chemical communication to modulate the balance between community-level defense requirements in high cell density populations and host fitness costs of basal CRISPR-Cas activity.This work was supported by a Rutherford Discovery Fellowship (P.C.F.) from the Royal Society of New Zealand (RSNZ) and the Marsden Fund, RSNZ. A.G.P. was supported by a University of Otago Doctoral Scholarship. G.P.C.S. is funded by the Biotechnology and Biological Sciences Research Council, UK

    Observational Properties of Jets in Active Galactic Nuclei

    Full text link
    Parsec scale jet properties are shortly presented and discussed. Observational data are used to derive constraints on the jet velocity and orientation, the presence of velocity structures, and the connection between the pc and kpc scale. Two peculiar sources with limb-brightened jets: 1144+35 and Mkn 501 are discussed in detail.Comment: 13 pages with 7 figures. To appear in "Virtual Astrophysical Jets" APSS, Kluwer Academic Publisher - Massaglia, Bodo, Rossi eds - in pres

    Mathematics difficulties in extremely preterm children : evidence of a specific deficit in basic mathematics processing

    Get PDF
    Background: Extremely preterm (EP, <26 wk gestation) children have been observed to have poor academic achievement in comparison to their term-born peers, especially in mathematics. This study investigated potential underlying causes of this difficulty. Methods: A total of 219 EP participants were compared with 153 term-born control children at 11 y of age. All children were assessed by a psychologist on a battery of standardized cognitive tests and a number estimation test assessing children’s numerical representations. Results: EP children underperformed in all tests in comparison with the term controls (the majority of Ps < 0.001). Different underlying relationships between performance on the number estimation test and mathematical achievement were found in EP as compared with control children. That is, even after controlling for cognitive ability, a relationship between number representations and mathematical performance persisted for EP children only (EP: r = 0.346, n = 186, P < 0.001; control: r = 0.095, n = 146, P = 0.256). Conclusion: Interventions for EP children may target improving children’s numerical representations in order to subsequently remediate their mathematical skills

    The Statistical Mechanics of Horizons and Black Hole Thermodynamics

    Get PDF
    Although we know that black holes are characterized by a temperature and an entropy, we do not yet have a satisfactory microscopic ``statistical mechanical'' explanation for black hole thermodynamics. I describe a new approach that attributes the thermodynamic properties to ``would-be gauge'' degrees of freedom that become dynamical on the horizon. For the (2+1)-dimensional black hole, this approach gives the correct entropy. (Talk given at the Pacific Conference on Gravitation and Cosmology, Seoul, February 1996.)Comment: 11 pages, LaTe

    ExoMol molecular line lists – XLIII. Rovibronic transitions corresponding to the close-lying X 2Π and A 2Σ+ states of NaO

    Get PDF
    The sodium monoxide radical (NaO) is observed in night-glow in the Earth’s mesosphere and likely has astronomical importance. This study concerns the optical transitions within the ground X 2Π state and to the very low-lying (Te ≈ 2000 cm−1) excited A 2Σ+ state. A line list consisting of rovibronic term values, allowed electric dipole transitions, Einstein coefficients, and partition functions for varying temperature are produced using a variational solution of the coupled-channel Schrödinger equations using the program duo. multi-reference configuration interaction (MRCI) ab initio calculations characterizing the potential energy curves of the two states, spin-orbit and L-uncoupling non-adiabatic matrix elements, as well as permanent and transition dipole moments were integral in the formation of the final deperturbation model. Ab initio potential energy curves are represented in the analytical Extended Morse Oscillator form and refined, along with the spin-orbit and L-uncoupling functions, by least-squares fitting to the available spectroscopic data. The input experimental data consisted of pure rotational transitions within the fine-structure components of the X 2Π state for v″ ∈ [0, 3] vibrational levels as well as the rovibronic A 2Σ+(v′ = 0) ← X 2Π(v″ = 0) transitions, both with limited coverage over rotational excitation. The lack of data detailing the vibrational structure of the X and A states points to the need for further experimental study of higher excited levels, which would provide a more robust spectroscopic model. The NaO NaOUCMe line list is available via www.exomol.com and the CDS data base

    Change and Aging Senescence as an adaptation

    Get PDF
    Understanding why we age is a long-lived open problem in evolutionary biology. Aging is prejudicial to the individual and evolutionary forces should prevent it, but many species show signs of senescence as individuals age. Here, I will propose a model for aging based on assumptions that are compatible with evolutionary theory: i) competition is between individuals; ii) there is some degree of locality, so quite often competition will between parents and their progeny; iii) optimal conditions are not stationary, mutation helps each species to keep competitive. When conditions change, a senescent species can drive immortal competitors to extinction. This counter-intuitive result arises from the pruning caused by the death of elder individuals. When there is change and mutation, each generation is slightly better adapted to the new conditions, but some older individuals survive by random chance. Senescence can eliminate those from the genetic pool. Even though individual selection forces always win over group selection ones, it is not exactly the individual that is selected, but its lineage. While senescence damages the individuals and has an evolutionary cost, it has a benefit of its own. It allows each lineage to adapt faster to changing conditions. We age because the world changes.Comment: 19 pages, 4 figure
    corecore