199 research outputs found
A Hilbert Space Theory of Generalized Graph Signal Processing
Graph signal processing (GSP) has become an important tool in many areas such
as image processing, networking learning and analysis of social network data.
In this paper, we propose a broader framework that not only encompasses
traditional GSP as a special case, but also includes a hybrid framework of
graph and classical signal processing over a continuous domain. Our framework
relies extensively on concepts and tools from functional analysis to generalize
traditional GSP to graph signals in a separable Hilbert space with infinite
dimensions. We develop a concept analogous to Fourier transform for generalized
GSP and the theory of filtering and sampling such signals
Multi-hop Diffusion LMS for Energy-constrained Distributed Estimation
We propose a multi-hop diffusion strategy for a sensor network to perform
distributed least mean-squares (LMS) estimation under local and network-wide
energy constraints. At each iteration of the strategy, each node can combine
intermediate parameter estimates from nodes other than its physical neighbors
via a multi-hop relay path. We propose a rule to select combination weights for
the multi-hop neighbors, which can balance between the transient and the
steady-state network mean-square deviations (MSDs). We study two classes of
networks: simple networks with a unique transmission path from one node to
another, and arbitrary networks utilizing diffusion consultations over at most
two hops. We propose a method to optimize each node's information neighborhood
subject to local energy budgets and a network-wide energy budget for each
diffusion iteration. This optimization requires the network topology, and the
noise and data variance profiles of each node, and is performed offline before
the diffusion process. In addition, we develop a fully distributed and adaptive
algorithm that approximately optimizes the information neighborhood of each
node with only local energy budget constraints in the case where diffusion
consultations are performed over at most a predefined number of hops. Numerical
results suggest that our proposed multi-hop diffusion strategy achieves the
same steady-state MSD as the existing one-hop adapt-then-combine diffusion
algorithm but with a lower energy budget.Comment: 14 pages, 12 figures. Submitted for publicatio
Finding an infection source under the SIS model
We consider the problem of identifying an infection source based only on an
observed set of infected nodes in a network, assuming that the infection
process follows a Susceptible-Infected-Susceptible (SIS) model. We derive an
estimator based on estimating the most likely infection source associated with
the most likely infection path. Simulation results on regular trees suggest
that our estimator performs consistently better than the minimum distance
centrality based heuristic
Identifying Infection Sources and Regions in Large Networks
Identifying the infection sources in a network, including the index cases
that introduce a contagious disease into a population network, the servers that
inject a computer virus into a computer network, or the individuals who started
a rumor in a social network, plays a critical role in limiting the damage
caused by the infection through timely quarantine of the sources. We consider
the problem of estimating the infection sources and the infection regions
(subsets of nodes infected by each source) in a network, based only on
knowledge of which nodes are infected and their connections, and when the
number of sources is unknown a priori. We derive estimators for the infection
sources and their infection regions based on approximations of the infection
sequences count. We prove that if there are at most two infection sources in a
geometric tree, our estimator identifies the true source or sources with
probability going to one as the number of infected nodes increases. When there
are more than two infection sources, and when the maximum possible number of
infection sources is known, we propose an algorithm with quadratic complexity
to estimate the actual number and identities of the infection sources.
Simulations on various kinds of networks, including tree networks, small-world
networks and real world power grid networks, and tests on two real data sets
are provided to verify the performance of our estimators
On the Properties of Gromov Matrices and their Applications in Network Inference
The spanning tree heuristic is a commonly adopted procedure in network
inference and estimation. It allows one to generalize an inference method
developed for trees, which is usually based on a statistically rigorous
approach, to a heuristic procedure for general graphs by (usually randomly)
choosing a spanning tree in the graph to apply the approach developed for
trees. However, there are an intractable number of spanning trees in a dense
graph. In this paper, we represent a weighted tree with a matrix, which we call
a Gromov matrix. We propose a method that constructs a family of Gromov
matrices using convex combinations, which can be used for inference and
estimation instead of a randomly selected spanning tree. This procedure
increases the size of the candidate set and hence enhances the performance of
the classical spanning tree heuristic. On the other hand, our new scheme is
based on simple algebraic constructions using matrices, and hence is still
computationally tractable. We discuss some applications on network inference
and estimation to demonstrate the usefulness of the proposed method
A Multitask Diffusion Strategy with Optimized Inter-Cluster Cooperation
We consider a multitask estimation problem where nodes in a network are
divided into several connected clusters, with each cluster performing a
least-mean-squares estimation of a different random parameter vector. Inspired
by the adapt-then-combine diffusion strategy, we propose a multitask diffusion
strategy whose mean stability can be ensured whenever individual nodes are
stable in the mean, regardless of the inter-cluster cooperation weights. In
addition, the proposed strategy is able to achieve an asymptotically unbiased
estimation, when the parameters have same mean. We also develop an
inter-cluster cooperation weights selection scheme that allows each node in the
network to locally optimize its inter-cluster cooperation weights. Numerical
results demonstrate that our approach leads to a lower average steady-state
network mean-square deviation, compared with using weights selected by various
other commonly adopted methods in the literature.Comment: 30 pages, 8 figures, submitted to IEEE Journal of Selected Topics in
Signal Processin
- …