199 research outputs found

    A Hilbert Space Theory of Generalized Graph Signal Processing

    Full text link
    Graph signal processing (GSP) has become an important tool in many areas such as image processing, networking learning and analysis of social network data. In this paper, we propose a broader framework that not only encompasses traditional GSP as a special case, but also includes a hybrid framework of graph and classical signal processing over a continuous domain. Our framework relies extensively on concepts and tools from functional analysis to generalize traditional GSP to graph signals in a separable Hilbert space with infinite dimensions. We develop a concept analogous to Fourier transform for generalized GSP and the theory of filtering and sampling such signals

    Multi-hop Diffusion LMS for Energy-constrained Distributed Estimation

    Full text link
    We propose a multi-hop diffusion strategy for a sensor network to perform distributed least mean-squares (LMS) estimation under local and network-wide energy constraints. At each iteration of the strategy, each node can combine intermediate parameter estimates from nodes other than its physical neighbors via a multi-hop relay path. We propose a rule to select combination weights for the multi-hop neighbors, which can balance between the transient and the steady-state network mean-square deviations (MSDs). We study two classes of networks: simple networks with a unique transmission path from one node to another, and arbitrary networks utilizing diffusion consultations over at most two hops. We propose a method to optimize each node's information neighborhood subject to local energy budgets and a network-wide energy budget for each diffusion iteration. This optimization requires the network topology, and the noise and data variance profiles of each node, and is performed offline before the diffusion process. In addition, we develop a fully distributed and adaptive algorithm that approximately optimizes the information neighborhood of each node with only local energy budget constraints in the case where diffusion consultations are performed over at most a predefined number of hops. Numerical results suggest that our proposed multi-hop diffusion strategy achieves the same steady-state MSD as the existing one-hop adapt-then-combine diffusion algorithm but with a lower energy budget.Comment: 14 pages, 12 figures. Submitted for publicatio

    Finding an infection source under the SIS model

    Full text link
    We consider the problem of identifying an infection source based only on an observed set of infected nodes in a network, assuming that the infection process follows a Susceptible-Infected-Susceptible (SIS) model. We derive an estimator based on estimating the most likely infection source associated with the most likely infection path. Simulation results on regular trees suggest that our estimator performs consistently better than the minimum distance centrality based heuristic

    Identifying Infection Sources and Regions in Large Networks

    Full text link
    Identifying the infection sources in a network, including the index cases that introduce a contagious disease into a population network, the servers that inject a computer virus into a computer network, or the individuals who started a rumor in a social network, plays a critical role in limiting the damage caused by the infection through timely quarantine of the sources. We consider the problem of estimating the infection sources and the infection regions (subsets of nodes infected by each source) in a network, based only on knowledge of which nodes are infected and their connections, and when the number of sources is unknown a priori. We derive estimators for the infection sources and their infection regions based on approximations of the infection sequences count. We prove that if there are at most two infection sources in a geometric tree, our estimator identifies the true source or sources with probability going to one as the number of infected nodes increases. When there are more than two infection sources, and when the maximum possible number of infection sources is known, we propose an algorithm with quadratic complexity to estimate the actual number and identities of the infection sources. Simulations on various kinds of networks, including tree networks, small-world networks and real world power grid networks, and tests on two real data sets are provided to verify the performance of our estimators

    On the Properties of Gromov Matrices and their Applications in Network Inference

    Full text link
    The spanning tree heuristic is a commonly adopted procedure in network inference and estimation. It allows one to generalize an inference method developed for trees, which is usually based on a statistically rigorous approach, to a heuristic procedure for general graphs by (usually randomly) choosing a spanning tree in the graph to apply the approach developed for trees. However, there are an intractable number of spanning trees in a dense graph. In this paper, we represent a weighted tree with a matrix, which we call a Gromov matrix. We propose a method that constructs a family of Gromov matrices using convex combinations, which can be used for inference and estimation instead of a randomly selected spanning tree. This procedure increases the size of the candidate set and hence enhances the performance of the classical spanning tree heuristic. On the other hand, our new scheme is based on simple algebraic constructions using matrices, and hence is still computationally tractable. We discuss some applications on network inference and estimation to demonstrate the usefulness of the proposed method

    A Multitask Diffusion Strategy with Optimized Inter-Cluster Cooperation

    Full text link
    We consider a multitask estimation problem where nodes in a network are divided into several connected clusters, with each cluster performing a least-mean-squares estimation of a different random parameter vector. Inspired by the adapt-then-combine diffusion strategy, we propose a multitask diffusion strategy whose mean stability can be ensured whenever individual nodes are stable in the mean, regardless of the inter-cluster cooperation weights. In addition, the proposed strategy is able to achieve an asymptotically unbiased estimation, when the parameters have same mean. We also develop an inter-cluster cooperation weights selection scheme that allows each node in the network to locally optimize its inter-cluster cooperation weights. Numerical results demonstrate that our approach leads to a lower average steady-state network mean-square deviation, compared with using weights selected by various other commonly adopted methods in the literature.Comment: 30 pages, 8 figures, submitted to IEEE Journal of Selected Topics in Signal Processin
    • …
    corecore